首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Human respiratory syncytial virus (HRSV) is the most frequent cause of severe respiratory infections in infancy. No vaccine against this virus has yet been protective, and antiviral drugs have been of limited utility. Using the cotton rat model of HRSV infection, we examined bovine respiratory syncytial virus (BRSV), a cause of acute respiratory disease in young cattle, as a possible vaccine candidate to protect children against HRSV infection. Cotton rats were primed intranasally with graded doses of BRSV/375 or HRSV/Long or were left unprimed. Three weeks later, they were challenged intranasally with either BRSV/375, HRSV/Long (subgroup A), or HRSV/18537 (subgroup B). At intervals postchallenge, animals were sacrificed for virus titration and histologic evaluation. Serum neutralizing antibody titers were determined at the time of viral challenge. BRSV/375 replicated to low titers in nasal tissues and lungs. Priming with 10(5) PFU of BRSV/375 effected a 500- to 1,000-fold reduction in peak nasal HRSV titer and a greater than 1,000-fold reduction in peak pulmonary HRSV titer upon challenge with HRSV/Long or HRSV/18537. In contrast to priming with HRSV, priming with BRSV did not induce substantial levels of neutralizing antibody against HRSV and was associated with a delayed onset of clearance of HRSV upon challenge. Priming with BRSV/375 caused mild nasal and pulmonary pathology and did not cause exacerbation of disease upon challenge with HRSV/Long. Our findings suggest that BRSV may be a potential vaccine against HRSV and a useful tool for studying the mechanisms of immunity to HRSV.  相似文献   

2.
Fifteen temperature-sensitive mutants of the RSN-2 strain of respiratory syncytial virus have been classified into six complementation groups, two of which appeared to be homologous with two of the three complementation groups of the A2 strain described by Wright et al. (P. F. Wright, M. A. Gharpure, D. S. Hodes, and R. M. Chanock, Arch. Gesamte Virusforsch, 41:238--247). Thus seven complementation groups of respiratory syncytial virus, designated A, B, C, D, E, F, and G, have been defined. The frequency and type of mutant isolated varied according to strain; group C was unique to the A2 strain, and groups D, E, F, and G were unique to the RSN-2 strain. The highest complementation indexes were obtained by preincubation for 7 h at permissive temperature, followed by incubation at restrictive temperature for 40 to 50 h in the case of A2 strain mutants or 80 to 90 h for RSN-2 strain mutants. Genetic recombination was not detected.  相似文献   

3.
《Seminars in Virology》1995,6(6):371-378
Human respiratory syncytial virus (HuRSV) is the majorviral cause of severe lower respiratory tract disease in babies and infants with epidemics occurring annually in the winter in temperate climates. Analysis of the antigenic and genetic variability of HuRSV isolates has shown that there are two groups of the virus and that each group can be further subdivided into a number of genotypes in which the attachment protein shows the greatest variability together with progressive change. Epidemics are made up of multiple genotypes whose proportions vary from year to year. The various genotypes cocirculate with very similar viruses distributed world-wide.  相似文献   

4.
Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research.  相似文献   

5.
Purification of human respiratory syncytial virus fusion glycoprotein   总被引:1,自引:0,他引:1  
Human respiratory syncytial virus (RSV) fusion glycoprotein (F) elicits neutralizing antibodies to RSV and has therefore attracted much attention as a suitable candidate antigen in the development of gene-based vaccines against RSV infections. However, a major obstacle in vaccine development has been the problem of antigen purification. To address this problem, we have developed a new method that combines sucrose gradient ultracentrifugation and a two-step chromatographic process, to purify RSV F from RSV particles propagated in HEp-2 cells. Analysis of the fractions produced using this method showed recovery of a functional homodimer with a molecular weight of 140 kDa, and 54% preservation of the original F.  相似文献   

6.
Genetic recombination of human immunodeficiency virus.   总被引:13,自引:23,他引:13  
We investigated genetic recombination of the human immunodeficiency virus (HIV) in a tissue culture system. A clonal cell line expressing a single integrated HIV provirus with a termination codon affecting pol gene expression was transfected with different defective mutants derived from an infectious molecular clone of HIV. Replication-competent viral particles were recovered, passaged, and plaque purified. Restriction analyses of the proviral DNA corresponding to several of these viruses indicated that their emergence was the result of genetic recombination.  相似文献   

7.
8.
The proteins of Long strain RSV and three temperature-sensitive (ts) mutants of the A2 strain were compared by pulse labeling virus-infected cells with [35S]methionine and [3H]glucosamine followed by analysis of the cell lysates by polyacrylamide gel electrophoresis. At the permissive temperature (30 degrees) proteins ranging in molecular weight from 24,000 to 50,000 (VP24, VP27, VP33, VP44) could be identified. Immunoprecipitation of viral lysates by immune rabbit serum demonstrated antigenic similarity with VP27, VP44, VP50, and VP67 in all ts mutants and Long strain RSV. [3H]Glucosamine labeling demonstrated glycoproteins of 90,000 (GP90) and 50,000 (GP50) in Long strain and GP90 in the ts mutants.  相似文献   

9.
Immunovirological studies suggest that human respiratory syncytial virus may well be composed of five structural proteins as are other members of the Paramyxoviridae family: the two external membrane glycoproteins H (90 000) and Fo (F1, 49 000; F2, 20 000; disulfide linked), the internal membrane protein M (34 000), the nucleoprotein N (42 000), and a protein (78 000) designated P that could be the equivalent of the polymerase of the morbillivirus and paramyxovirus genus. Neutralizing monoclonal antibodies showed, by immunoprecipitation and immunoblotting, that the fusion protein carries neutralizing epitopes. One monoclonal antibody, which shows a high neutralizing titer, immunoblotted directly with the F1 fragment (49 000) of the fusion protein. Analysis in mice of the immunogenicity of the structural proteins separated on sodium dodecyl sulphate gels indicated that, under our conditions, only the fusion protein dimer Fo and its F1 fragment were capable of inducing neutralizing antibodies.  相似文献   

10.
11.
Human respiratory syncytial virus (HRSV) is the most important cause of acute respiratory disease in infants. Two major subgroups (A and B) have been identified based on antigenic differences in the attachment G protein. Antigenic variation between and within the subgroups may contribute to reinfections with these viruses by evading the host immune responses. To investigate the circulation patterns and mechanisms by which HRSV-B viruses evolve, we analyzed the G protein genetic variability of subgroup B sequences isolated over a 45-year period, including 196 Belgian strains obtained over 22 epidemic seasons (1982 to 2004). Our study revealed that the HRSV-B evolutionary rate (1.95 x 10(-3) nucleotide substitutions/site/year) is similar to that previously estimated for HRSV-A (1.83 x 10(-3) nucleotide substitutions/site/year). However, natural HRSV-B isolates appear to accommodate more drastic changes in their attachment G proteins. The most recent common ancestor of the currently circulating subgroup B strains was estimated to date back to around the year 1949. The divergence between the two major subgroups was calculated to have occurred approximately 350 years ago. Furthermore, we have identified 12 positively selected sites in the G protein ectodomain, suggesting that immune-driven selective pressure operates in certain codon positions. HRSV-A and -B strains have similar phylodynamic patterns: both subgroups are characterized by global spatiotemporal strain dynamics, where the high infectiousness of HRSV permits the rapid geographic spread of novel strain variants.  相似文献   

12.
Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are ubiquitous respiratory pathogens of the Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly conserved fusion (F) protein, and the extremely diverse attachment (G) glycoprotein. Both viruses comprise two genetic groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV and HMPV variants from the UK, The Netherlands, Bangkok and data available from Genbank were used to identify clades of both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions. The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups.  相似文献   

13.

Background

Individuals with deficiencies of pulmonary surfactant protein C (SP-C) develop interstitial lung disease (ILD) that is exacerbated by viral infections including respiratory syncytial virus (RSV). SP-C gene targeted mice (Sftpc -/-) lack SP-C, develop an ILD-like disease and are susceptible to infection with RSV.

Methods

In order to determine requirements for correction of RSV induced injury we have generated compound transgenic mice where SP-C expression can be induced on the Sftpc -/- background (SP-C/Sftpc -/-) by the administration of doxycycline (dox). The pattern of induced SP-C expression was determined by immunohistochemistry and processing by Western blot analysis. Tissue and cellular inflammation was measured following RSV infection and the RSV-induced cytokine response of isolated Sftpc +/+ and -/- type II cells determined.

Results

After 5 days of dox administration transgene SP-C mRNA expression was detected by RT-PCR in the lungs of two independent lines of bitransgenic SP-C/Sftpc -/- mice (lines 55.3 and 54.2). ProSP-C was expressed in the lung, and mature SP-C was detected by Western blot analysis of the lavage fluid from both lines of SP-C/Sftpc -/- mice. Induced SP-C expression was localized to alveolar type II cells by immunostaining with an antibody to proSP-C. Line 55.3 SP-C/Sftpc -/- mice were maintained on or off dox for 7 days and infected with 2.6x107 RSV pfu. On day 3 post RSV infection total inflammatory cell counts were reduced in the lavage of dox treated 55.3 SP-C/Sftpc -/- mice (p = 0.004). The percentage of neutrophils was reduced (p = 0.05). The viral titers of lung homogenates from dox treated 55.3 SP-C/Sftpc -/- mice were decreased relative to 55.3 SP-C/Sftpc -/- mice without dox (p = 0.01). The cytokine response of Sftpc -/- type II cells to RSV was increased over that of Sftpc +/+ cells.

Conclusions

Transgenic restoration of SP-C reduced inflammation and improved viral clearance in the lungs of SP-C deficient mice. The loss of SP-C in alveolar type II cells compromises their response to infection. These findings show that the restoration of SP-C in Sftpc -/- mice in response to RSV infection is a useful model to determine parameters for therapeutic intervention.  相似文献   

14.
Zhao X  Liu E  Chen FP  Sullender WM 《Journal of virology》2006,80(23):11651-11657
Respiratory syncytial virus (RSV) is the only infectious disease for which a monoclonal antibody (MAb) is used in humans. Palivizumab (PZ) is a humanized murine MAb to the F protein of RSV. PZ-resistant viruses appear after in vitro and in vivo growth of RSV in the presence of PZ. Fitness for replication could be a determinant of the likelihood of dissemination of resistant viruses. We assessed the fitness of two PZ-resistant viruses (F212 and MP4). F212 grew less well in cell culture than the parent A2 virus and was predicted to be less fit than A2. Equal amounts of F212 and A2 were mixed and passaged in cell culture. F212 disappeared from the viral population, indicating it was less fit than the A2 virus. The MP4 virus grew as well as A2 in culture and in cotton rats. A2/MP4 virus input ratios of 1:1, 10:1, 100:1, and 1,000:1 were compared in competitive replication. For all input ratios except 1,000:1, the MP4 virus became dominant, supplanting the A2 virus. The MP4 virus also dominated the A2 virus during growth in cotton rats. Thus, the mutant MP4 virus was more fit than A2 virus in both in vitro and in vivo competitive replication. Whether this fitness difference was due to the identified nucleotide substitutions in the F gene or to mutations elsewhere in the genome is unknown. Understanding the mechanisms by which mutant virus fitness increased or decreased could prove useful for consideration in attenuated vaccine design efforts.  相似文献   

15.

Background

Severe respiratory syncytial virus infection (RSV) during infancy has been shown to be a major risk factor for the development of subsequent wheeze. However, the reasons for this link remain unclear. The objective of this research was to determine the consequences of early exposure to RSV and allergen in the development of subsequent airway hyperreactivity (AHR) using a developmental time point in the mouse that parallels that of the human neonate.

Methods

Weanling mice were sensitized and challenged with ovalbumin (Ova) and/or infected with RSV. Eight days after the last allergen challenge, various pathophysiological endpoints were examined.

Results

AHR in response to methacholine was enhanced only in weanling mice exposed to Ova and subsequently infected with RSV. The increase in AHR appeared to be unrelated to pulmonary RSV titer. Total bronchoalveolar lavage cellularity in these mice increased approximately two-fold relative to Ova alone and was attributable to increases in eosinophil and lymphocyte numbers. Enhanced pulmonary pathologies including persistent mucus production and subepithelial fibrosis were observed. Interestingly, these data correlated with transient increases in TNF-α, IFN-γ, IL-5, and IL-2.

Conclusion

The observed changes in pulmonary structure may provide an explanation for epidemiological data suggesting that early exposure to allergens and RSV have long-term physiological consequences. Furthermore, the data presented here highlight the importance of preventative strategies against RSV infection of atopic individuals during neonatal development.  相似文献   

16.
Viral and host factors in human respiratory syncytial virus pathogenesis   总被引:2,自引:1,他引:1  
  相似文献   

17.
Posttranslational processing and cell surface expression were examined for three C-terminally truncated mutants of the G protein of respiratory syncytial virus expressed from engineered cDNAs. The truncated mutants, encoded by cDNAs designated G71, G180, and G230, contained the N-terminal 71, 180, and 230 amino acids, respectively, of the 298-amino-acid G protein. To facilitate detection of G71, which reacted inefficiently with G-specific antisera, we constructed a parallel set of cDNAs, designated G71/13, G180/13, and G230/13, to encode the same truncated species with the addition of a C-terminal 13-amino-acid reporter peptide which could be detected efficiently with an antipeptide serum. G71, G180, and G230 were expressed as species of Mr 7,500, 48,000, and 51,000, respectively, compared with 84,000 for parental G protein. The proteins encoded by G180 and G230, like parental G protein, contained both N-linked and O-linked carbohydrate. Also, the protein encoded by G71/13 appeared to be O glycosylated, showing that even this highly truncated form contained the structural information required to target the protein for O glycosylation. As for parental G protein, the estimated Mrs of the proteins encoded by G180 and G230 were approximately twice the calculated molecular weight of the polypeptide chain. Experiments with monensin showed that most of this difference between the calculated and observed Mr was due to posttranslational processing in or beyond the trans-Golgi compartment, presumably owing to the addition of carbohydrate or aggregation into dimers or both. Like parental G protein, all three truncated forms accumulated abundantly at the cell surface, and in each case the C terminus was extracellular. Thus, the N-terminal 71 amino acids of the G protein contained all the structural information required for efficient membrane insertion and cell surface expression, whereas the extracellular domain was dispensable for these activities. Cotton rats were immunized with recombinant vaccinia viruses expressing the G71, G180, G230, or parental G protein to compare their abilities to induce serum antibodies and resistance to challenge virus replication. The G71 and G180 recombinants failed to induce significant levels of G-specific antibodies or resistance to challenge, whereas the immunogenicity of G230 equaled or exceeded that of parental G protein. This suggested that the C-terminal 68 amino acids of the 236-amino-acid ectodomain do not contribute to the major epitope(s) of the G protein that is involved in inducing protective immunity.  相似文献   

18.
Until now, the analysis of the genetic diversity of bovine respiratory syncytial virus (BRSV) has been based on small numbers of field isolates. In this report, we determined the nucleotide and deduced amino acid sequences of regions of the nucleoprotein (N protein), fusion protein (F protein), and glycoprotein (G protein) of 54 European and North American isolates and compared them with the sequences of 33 isolates of BRSV obtained from the databases, together with those of 2 human respiratory syncytial viruses and 1 ovine respiratory syncytial virus. A clustering of BRSV sequences according to geographical origin was observed. We also set out to show that a continuous evolution of the sequences of the N, G, and F proteins of BRSV has been occurring in isolates since 1967 in countries where vaccination was widely used. The exertion of a strong positive selective pressure on the mucin-like region of the G protein and on particular sites of the N and F proteins is also demonstrated. Furthermore, mutations which are located in the conserved central hydrophobic part of the ectodomain of the G protein and which result in the loss of four Cys residues and in the suppression of two disulfide bridges and an alpha helix critical to the three-dimensional structure of the G protein have been detected in some recent French BRSV isolates. This conserved central region, which is immunodominant in BRSV G protein, thus has been modified in recent isolates. This work demonstrates that the evolution of BRSV should be taken into account in the rational development of future vaccines.  相似文献   

19.
Polypeptides of respiratory syncytial virus.   总被引:10,自引:6,他引:4       下载免费PDF全文
Radiolabeled respiratory syncytial virus was purified from medium that had been harvested from infected HeLa cell monolayers before it contained much cellular debris. After isopycnic centrifugation in linear gradients prepared with sucrose dissolved in Hanks balanced salt solution, almost all the infectivity and most of the radioactivity were recovered in a single band with density from 1.16 to 1.23 g/cm3 and a peak at 1.2 g/cm3. Analysis by polyacrylamide gel electrophoresis resolved the purified virus into seven polypeptides of approximate molecular weights 20,000 to 80,000, of which the two largest and the smallest proved to by glycoproteins.  相似文献   

20.
The genetic characterization of four previously reported mutants of human respiratory syncytial (RS) virus resistant to monoclonal antibody 63G is described. Sequences of the G protein genes were obtained from: (i) mRNA derived cDNA recombinants, (ii) direct mRNA sequencing and (iii) amplified vRNA derived cDNAs. The results obtained indicate that the original escape mutants, recovered from individual plaques, contained heterogeneous viral populations. This heterogeneity affected the number of adenosine residues present after nucleotides 588 or 623 of the G protein gene. Mutant viruses recovered after a second plaque purification step generated homogeneous sequences but contained single adenosine insertions or deletions at those two sites compared with the Long sequence. These genetic alterations introduced frameshift changes which are reflected in both the antigenic and structural properties of the mutant G proteins. The origin and importance of frameshift mutations in the RS virus G protein gene are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号