首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brush border membrane vesicles (BBMV) maintain an initial hydrostatic pressure difference between the intra- and extravesicular medium, which causes membrane strain and surface area expansion (Soveral, Macey & Moura, 1997). This has not been taken into account in prior osmotic water permeability P f evaluations. In this paper, we find further evidence for the pressure in the variation of stopped-flow light scattering traces with different vesicle preparations. Response to osmotic shock is used to estimate water permeability in BBMV prepared with buffers of different osmolarities (18 and 85 mosM). Data analysis includes the dissipation of both osmotic and hydrostatic pressure gradients. P f values were of the order of 4 × 10−3 cm sec−1 independent of the osmolarity of the preparation buffer. Arrhenius plots of P f vs. 1/T were linear, showing a single activation energy of 4.6 kcal mol−1. The initial osmotic response which is significantly retarded is correlated with the period of elevated hydrostatic pressure. We interpret this as an inhibition of P f caused by membrane strain and suggest how this inhibition may play a role in cell volume regulation in the proximal tubule. Received: 8 August 1996/Revised: 4 March 1997  相似文献   

2.
Changes in volume of intestinal brush border membrane vesicles of the European eel Anguilla anguilla were measured as vesicles were exposed to media with different osmotic pressures. Preparing the vesicles in media of low osmotic pressure allowed the effects of a small hydrostatic pressure to become a significant factor in the osmotic equilibration. By applying LaPlace's law to relate pressure and volume and assuming a linear relation between membrane tension and area expansion, we estimate an initial membrane tension at 4.02 × 10−5 N cm−1 and an area compressibility elastic modulus at 0.87 × 10−3 N cm−1. The elastic modulus estimate falls in the low range of values reported for membranes from other tissues in other species. This lower modulus quantitatively accounts for why eel intestinal vesicles show measurable changes in volume in hypotonic media while rabbit kidney vesicles do not. Received: 28 January 1999/Revised: 15 June 1999  相似文献   

3.
The mechanical properties of brush border membrane vesicles, BBMV, from rabbit kidney proximal tubule cells, were studied by measuring the initial and final equilibrium volumes of vesicles subjected to different osmotic shocks, using cellobiose as the impermeant solute in the preparation buffer. An elevated intracellular hydrostatic pressure was inferred from osmotic balance requirements in dilute solutions. For vesicles prepared in 18 and 85 mosm solutions, these pressures are close to 17 mosm (290 mm Hg). The corresponding membrane surface tension is 6.0 × 10−5 N cm−1 while the membrane surface area is expanded by at least 2.2%. When these vesicles are exposed to very dilute solutions the internal hydrostatic pressure rises to an estimated 84 mosm (1444 mm Hg) just prior to lysis. The corresponding maximal surface tension (pre-lysis) is 18.7 × 10−5 N cm−1, and the maximal expansion of membrane area is 6.8%. The calculated area compressibility elastic modulus was 2.8 × 10−3 N cm−1. Received: 8 August 1996/Revised: 4 March 1997  相似文献   

4.
We investigated the block of KATP channels by glibenclamide in inside-out membrane patches of rat flexor digitorum brevis muscle. (1) We found that glibenclamide inhibited KATP channels with an apparent K i of 63 nm and a Hill coefficient of 0.85. The inhibition of KATP channels by glibenclamide was unaffected by internal Mg2+. (2) Glibenclamide altered all kinetic parameters measured; mean open time and burst length were reduced, whereas mean closed time was increased. (3) By making the assumption that binding of glibenclamide to the sulphonylurea receptor (SUR) leads to channel closure, we have used the relation between mean open time, glibenclamide concentration and K D to estimate binding and unbinding rate constants. We found an apparent rate constant for glibenclamide binding of 9.9 × 107 m −1 sec−1 and an unbinding rate of 6.26 sec−1. (4) Glibenclamide is a lipophilic molecule and is likely to act on sulfonylurea receptors from within the hydrophobic phase of the cell membrane. The glibenclamide concentration within this phase will be greater than that in the aqueous solution and we have taken this into account to estimate a true binding rate constant of 1.66 × 106 m −1 sec−1. Received: 7 July 1996/Revised: 4 October 1996  相似文献   

5.
Permeability of Boric Acid Across Lipid Bilayers and Factors Affecting It   总被引:13,自引:0,他引:13  
Boron enters plant roots as undissociated boric acid (H3BO3). Significant differences in B uptake are frequently observed even when plants are grown under identical conditions. It has been theorized that these differences reflect species differences in permeability coefficient of H3BO3 across plasma membrane. The permeability coefficient of boric acid however, has not been experimentally determined across any artificial or plant membrane. In the experiments described here the permeability coefficient of boric acid in liposomes made of phosphatidylcholine was 4.9 × 10−6 cm sec−1, which is in good agreement with the theoretical value. The permeability coefficient varied from 7 × 10−6 to 9.5 × 10−9 cm sec−1 with changes in sterols (cholesterol), the type of phospholipid head group, the length of the fatty acyl chain, and the pH of the medium. In this study we also used Arabidopsis thaliana mutants which differ in lipid composition to study the effect of lipid composition on B uptake. The chs1-1 mutant which has lower proportion of sterols shows 30% higher B uptake compared with the wild type, while the act1-1 mutant which has an increased percentage of longer fatty acids, exhibited 35% lower uptake than the wild type. Lipid composition changes in each of the remaining mutants influenced B uptake to various extents. These data suggest that lipid composition of the plasma membrane can affect total B uptake. Received: 15 October 1999/Revised: 11 February 2000  相似文献   

6.
To study vacuolar chloride (Cl) transport in the halophilic plant Mesembryanthemum crystallinum L., Cl uptake into isolated tonoplast vesicles was measured using the Cl-sensitive fluorescent dye lucigenin (N,N′-dimethyl-9,9′-bisacridinium dinitrate). Lucigenin was used at excitation and emission wavelengths of 433 nm and 506 nm, respectively, and showed a high sensitivity towards Cl, with a Stern-Volmer constant of 173 m −1 in standard assay buffer. While lucigenin fluorescence was strongly quenched by all halides, it was only weakly quenched, if at all, by other anions. However, the fluorescence intensity and Cl-sensitivity of lucigenin was shown to be strongly affected by alkaline pH and was dependent on the conjugate base used as the buffering ion. Chloride transport into tonoplast vesicles of M. crystallinum loaded with 10 mm lucigenin showed saturation-type kinetics with an apparent K m of 17.2 mm and a V max of 4.8 mm min−1. Vacuolar Cl transport was not affected by sulfate, malate, or nitrate. In the presence of 250 μm p-chloromercuribenzene sulfonate, a known anion-transport inhibitor, vacuolar Cl transport was actually significantly increased by 24%. To determine absolute fluxes of Cl using this method, the average surface to volume ratio of the tonoplast vesicles was measured by electron microscopy to be 1.13 × 107 m−1. After correcting for a 4.4-fold lower apparent Stern-Volmer constant for intravesicular lucigenin, a maximum rate of Cl transport of 31 nmol m−2 sec−1 was calculated, in good agreement with values obtained for the plant vacuolar membrane using other techniques. Received: 18 February 2000/Revised: 30 June 2000  相似文献   

7.
In vivo studies with leaf cells of aquatic plant species such as Elodea nuttallii revealed the proton permeability and conductance of the plasma membrane to be strongly pH dependent. The question was posed if similar pH dependent permeability changes also occur in isolated plasma membrane vesicles. Here we report the use of acridine orange to quantify passive proton fluxes. Right-side out vesicles were exposed to pH jumps. From the decay of the applied ΔpH the proton fluxes and proton permeability coefficients (PH+) were calculated. As in the intact Elodea plasma membrane, the proton permeability of the vesicle membrane is pH sensitive, an effect of internal pH as well as external pH on PH+ was observed. Under near symmetric conditions, i.e., zero electrical potential and zero ΔpH, PH+ increased from 65 × 10−8 at pH 8.5 to 10−1 m/sec at pH 11 and the conductance from 13 × 10−6 to 30 × 10−4 S/m2. At a constant pH i of 8 and a pH o going from 8.5 to 11, PH+ increased more than tenfold from 2 to 26 × 10−6 m/sec. The calculated values of PH+ were several orders of magnitude lower than those obtained from studies on intact leaves. Apparently, in plasma membrane purified vesicles the transport system responsible for the observed high proton permeability in vivo is either (partly) inactive or lost during the procedure of vesicle preparation. The residue proton permeability is in agreement with values found for liposome or planar lipid bilayer membranes, suggesting that it reflects an intrinsic permeability of the phospholipid bilayer to protons. Possible implications of these findings for transport studies on similar vesicle systems are discussed. Received: 5 April 1995/Revised: 28 March 1996  相似文献   

8.
Transepithelial water permeability was measured in LLC-PK1 cells stably transfected with aquaporins (AQPs): AQP1, AQP2, and a chimera of AQP1 and AQP2 containing 41 amino acids of the C-terminus of AQP2. Transepithelial water fluxes (Jw) were not previously reported in cells transfected with aquaporins. Jw were now recorded each minute using a specially developed experimental device. A significant increase in Posm after forskolin (FK) plus vasopressin (VP) was found in AQP2 transfected cells (39.9 ± 8.2 vs. 12.5 ± 3.3 cm · sec−1· 10−3), but not in cells transfected with AQP1 (15.3 ± 3.6 vs. 13.4 ± 3.6 cm · sec−1· 10−3). In the case of the AQP1/2 cells (chimera) the FK plus VP induced Posm was smaller than in AQP2 cells but significantly higher than in mock cells at rest (18.1 ± 4.8 vs. 6.7 ± 1.0 cm · sec−1· 10−3). The increases in Posm values were not paralleled by increases in 14C-Mannitol permeability. HgCl2 inhibited the hydrosmotic response to FK plus VP in AQP2 transfected epithelia. Results were comparable to those observed, in parallel experiments, in a native ADH-sensitive water channel containing epithelial barrier (the toad urinary bladder). Electron microscopy showed confluent LLC-PK1 cells with microvilli at the mucosal border. The presence of spherical or elongated intracellular vacuoles was observed in AQP2 transfected cells, specially after FK plus VP stimulus and under an osmotic gradient. These results demonstrate regulated transepithelial water permeability in epithelial cells transfected with AQP2. Received: 24 June 1997/Revised: 16 September 1997  相似文献   

9.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

10.
Lens Major Intrinsic Protein (MIP) is a member of a family of membrane transport proteins including the Aquaporins and bacterial glycerol transporters. When expressed in Xenopus oocytes, MIP increased both glycerol permeability and the activity of glycerol kinase. Glycerol permeability (p Gly ) was 2.3 ± 0.23 × 10−6 cm sec−1 with MIP vs. 0.92 ± 0.086 × 10−6 cm sec−1 in control oocytes. The p Gly of MIP was independent of concentration from 5 × 10−5 to 5 × 10−2 m, had a low temperature dependence, and was inhibited approximately 90%, 80% and 50% by 1.0 mm Hg++, 0.2 mm DIDS (diisothiocyanodisulfonic stilbene), and 0.1 mm Cu++, respectively. MIP-enhanced glycerol phosphorylation, resulting in increased incorporation of glycerol into lipids. This could arise from an increase in the total activity of glycerol kinase, or from an increase in its affinity for glycerol. Based on methods we present to distinguish these mechanisms, MIP increased the maximum rate of phosphorylation by glycerol kinase (0.12 ± 0.03 vs. 0.06 ± 0.01 pmol min−1 cell−1) without changing the binding of glycerol to the kinase (K M ∼ 10 μm). Received: 23 May 1997/Revised: 4 August 1997  相似文献   

11.
Kubitscheck U  Homann U  Thiel G 《Planta》2000,210(3):423-431
The dye FM1-43 was used alone or in combination with measurements of the membrane capacitance (Cm) to monitor membrane changes in protoplasts from Viciafaba L. guard cells. Confocal images of protoplasts incubated with FM1-43 (10 μM) at constant ambient osmotic pressure (πo) revealed in confocal images a slow internalisation of FM1-43-labelled membrane into the cytoplasm. As a result of this process the relative fluorescence intensity of the cell interior (fFM,i) increased with reference to the total fluorescence (fFM,t) by 7.4 × 10−4 min−1. This steady internalisation of dye suggests the occurrence of constitutive endocytosis under constant osmotic pressure. Steady internalisation of FM1-43 labelled membrane caused a prominent staining of a ring-like structure located beneath the plasma membrane. Abrupt elevation of πo by 200 mosmol kg−1 caused, over the first minutes of incubation, a rapid internalisation of FM1-43 fluorescence into the cytoplasm concomitant with a decrease in cell perimeter. Within the first 5 min the cell perimeter decreased by 7.9%. Over the same time fFM,i/fFM,t increased by 0.13, reflecting internalisation of fluorescent label into the cytoplasm. Combined measurements of Cm and total fluorescence of a protoplast (fFM,p) showed that an increase in πo evoked a decrease in Cm but no change in fFM,p. This means that surface contraction of the protoplast is due to retrieval of excess membrane from the plasma membrane and internalisation into the cytoplasm. Further inspection of confocal images revealed that protoplast shrinking was only occasionally associated with internalisation of giant vesicles (median diameter 2.7 μm) with FM1-43-labelled membrane. But, in all cases, osmotic contraction was correlated with a diffuse distribution of FM1-43 label throughout the cytoplasm. From this, we conclude that endocytosis of small vesicles into the cytoplasm is the obligatory process by which cells accommodate an osmotically driven decrease in membrane surface area. Received: 4 May 1999 / Accepted: 19 August 1999  相似文献   

12.
In tilapia (Oreochromis mossambicus) intestine, Mg2+ transport across the epithelium involves a transcellular, Na+- and Na+/K+-ATPase dependent pathway. In our search for the Mg2+ extrusion mechanism of the basolateral compartment of the enterocyte, we could exclude Na+/Mg2+ antiport or ATP-driven transport. Evidence is provided, however, that Mg2+ movement across the membrane is coupled to anion transport. In basolateral plasma membrane vesicles, an inwardly directed Cl gradient stimulated Mg2+ uptake (as followed with the radionuclide 27Mg) twofold. As Cl-stimulated uptake was inhibited by the detergent saponin and by the ionophore A23187, Mg2+ may be accumulated intravesicularly above chemical equilibrium. Valinomycin did not affect uptake, suggesting that electroneutral symport activity occurred. The involvement of anion coupled transport was further indicated by the inhibition of Mg2+ uptake by the stilbene derivative, 4,4′-diisothiocyanato-stilbene-2,2′-disulfonic acid. Kinetic analyses of the Cl-stimulated Mg2+ uptake yielded a K m (Mg2+) of 6.08 ± 1.29 mmol · l−1 and a K m (Cl) of 26.5 ± 6.5 mmol · l−1, compatible with transport activity at intracellular Mg2+- and Cl-levels. We propose that Mg2+ absorption in the tilapia intestine involves an electrically neutral anion symport mechanism. Received: 19 January 1996/Revised: 1 August 1996  相似文献   

13.
Rate and equilibrium measurements of ryanodine binding to terminal cysternae fractions of heavy sarcoplasmic reticulum vesicles demonstrate that its activation by high concentrations of monovalent salts is based on neither elevated osmolarity nor ionic strength. The effect of the ions specifically depends on their chemical nature following the Hofmeister ion series for cations (Li+ < NH+ 4 < K∼ Cs+≤ Na+) and anions (gluconate < Cl < NO3 ∼ ClO4 ∼ SCN) respectively, indicating that both are involved in the formation of the salt-protein complex that can react with ryanodine. Activation by rising salt concentrations exhibits saturation kinetics with different dissociation constants (25–11 m) and different degrees of cooperativity (n= 1.5–4.0) for the respective salts. Maximal second order binding rates between 40,000 and 80,000 (m −1· sec−1) were obtained for chlorides and nitrates of 1a group alkali ions with the exception of lithium supporting only rates of maximally 10,000 (M−1· sec−1). The nitrogen bases, NH+ 4 and Tris+, in combination with chloride or nitrate, behave divergently. High maximal binding rates were achieved only with NH4NO3. The dissociation constants for the ryanodine–protein complexes obtained by measurements at equilibrium proved to depend differently on salt concentration, yet, converging to 1–3 nm for the applied salts at saturating concentrations. The salts do not affect dissociation of the ryanodine protein complex proving that the effect of salts on the protein's affinity for ryanodine is determined by their effect on the on-rate of ryanodine binding. ATP and its analogues modify salt action resulting in elevated maximal binding rates and reduction or abolition of binding cooperativity. Linear relations have been obtained by comparing the rates of ryanodine binding at different salt concentrations with the rates or the initial amplitudes (15 sec) of salt induced calcium release from actively loaded heavy vesicles indicating that the various salts promote specifically and concentration dependently channel opening and its reaction with ryanodine. Received: 9 February 1998/Revised: 24 April 1998  相似文献   

14.
Seedling roots of corn were treated with different concentrations of mannitol-containing solution for 1 to 1.5 hr, and net fluxes of Ca2+ and H+ were measured in the elongation region. H+ fluxes were much more sensitive to osmotic pressure than were Ca2+ fluxes. Oscillations of 7-min period in H+ flux, normally observed in the control, were almost fully suppressed at high osmotic concentrations. Net H+ flux was shifted from average efflux of 25 ± 3 nmol m−2 sec−1 to average influx of 10 ± 5 nmol m−2 sec−1 after the incubation in 100 mm mannitol. The larger the osmotic concentration, the larger was the H+ influx. This flux caused the unbuffered solution of pH 4.85 to change to pH 5.3 after mannitol application. It appears that the osmoticum suppresses oscillatory H+ extrusion at the plasma membrane. Discrete Fourier Transforms of the H+ flux data showed that, apart from suppression of the 7-min oscillations in H+ flux, mannitol also promoted the appearance of faster 2-min oscillations. Ca2+ influx slightly increased after mannitol treatment. In addition the 7-min oscillatory component of Ca2+ flux remained apparent thereby showing independence of H+ flux. Received: 25 April 1997/Revised: 11 August 1997  相似文献   

15.
The gating cycle of CFTR (Cystic Fibrosis Transmembrane conductance Regulator) chloride channels requires ATP hydrolysis and can be interrupted by exposure to the nonhydrolyzable nucleotide AMP-PNP. To further characterize nucleotide interactions and channel gating, we have studied the effects of AMP-PNP, protein kinase C (PKC) phosphorylation, and temperature on gating kinetics. The rate of channel locking increased from 1.05 × 10−3 sec−1 to 58.7 × 10−3 sec−1 when AMP-PNP concentration was raised from 0.5 to 5 mm in the presence of 1 mm MgATP and 180 nm protein kinase A catalytic subunit (PKA). Although rapid locking precluded estimation of P o or opening rate immediately after the addition of AMP-PNP to wild-type channels, analysis of locking rates in the presence of high AMP-PNP concentrations revealed two components. The appearance of a distinct, slow component at high [AMP-PNP] is evidence for AMP-PNP interactions at a second site, where competition with ATP would reduce P o and thereby delay locking. All channels exhibited locking when they were strongly phosphorylated by PKA, but not when exposed to PKC alone. AMP-PNP increased P o at temperatures above 30°C but did not cause locking, evidence that the stabilizing interactions between domains, which have been proposed to maintain CFTR in the open burst state, are relatively weak. The temperature dependence of normal CFTR gating by ATP was strongly asymmetric, with the opening rate being much more temperature sensitive (Q 10= 9.6) than the closing rate (Q 10= 3.6). These results are consistent with a cyclic model for gating of phosphorylated CFTR. Received: 28 August 1997/Revised: 4 February 1998  相似文献   

16.
The presence of an electrogenic H+-ATPase has been described in the late distal tubule, a segment which contains intercalated cells. The present paper studies the electrogenicity of this transport mechanism, which has been demonstrated in turtle bladder and in cortical collecting duct. Transepithelial PD (V t ) was measured by means of Ling-Gerard microelectrodes in late distal tubule of rat renal cortex during in vivo microperfusion. The tubules were perfused with electrolyte solutions to which 2 × 10−7 m bafilomycin or 4.6 × 10−8 m concanamycin were added. No significant increase in lumen-negative V t upon perfusion with these inhibitors as compared to control, was observed as well as when 10−3 m amiloride, 10−5 m benzamil or 3 mm Ba2+ were perfused alone or in combination. The effect of an inhibition of electrogenic H+ secretion, i.e., increase in lumen-negative V t by 2–4 mV, was observed only when Cl channels were blocked by 10−5 m 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). This blocker also reduced the rate of bicarbonate reabsorption in this segment from 1.21 ± 0.14 (n= 8) to 0.62 ± 0.03 (8) nmol.cm−2.sec−1 as determined by stationary microperfusion and pH measurement by ion-exchange resin microelectrodes. These results indicate that: (i) the participation of the vacuolar H+ ATPase in the establishment of cortical late distal tubule V t is minor in physiological conditions, but can be demonstrated after blocking Cl channels, thus suggesting a shunting effect of this anion; and, (ii) the rate of H+ secretion in this segment is reduced by a Cl channel blocker, supporting coupling of H+-ATPase with Cl transport. Received: 6 July 1996/Revised: 27 December 1996  相似文献   

17.
In the giant-celled marine algae Valonia utricularis the turgor-sensing mechanism of the plasmalemma and the role of the tonoplast in turgor regulation is unknown because of the lack of solid data about the individual electrical properties of the plasmalemma and the vacuolar membrane. For this reason, a vacuolar perfusion technique was developed that allowed controlled manipulation of the vacuolar sap under turgescent conditions (up to about 0.3 MPa). Charge-pulse relaxation studies on vacuolarly perfused cells at different turgor pressure values showed that the area-specific resistance of the total membrane barrier (tonoplast and plasmalemma) exhibited a similar dependence on turgor pressure as reported in the literature for nonperfused cells: the resistance assumed a minimum value at the physiological turgor pressure of about 0.1 MPa. The agreement of the data suggested that the perfusion process did not alter the transport properties of the membrane barrier. Addition of 16 μm of the H+-carrier FCCP (carbonylcyanide p-trifluoromethoxyphenyhydrazone) to the perfusion solution resulted in a drop of the total membrane potential from +4 mV to −22 mV and in an increase of the area-specific membrane resistance from 6.8 × 10−2 to 40.6 × 10−2Ωm2. The time constants of the two exponentials of the charge pulse relaxation spectrum increased significantly. These results are inconsistent with the assumption of a high-conductance state of the tonoplast (R. Lainson and C.P. Field, J. Membrane Biol. 29:81–94, 1976). Depending on the site of addition, the pore-forming antibiotics nystatin and amphotericin B affected either the time constant of the fast or of the slow relaxation (provided that the composition of the perfusion solution and the artificial sea water were replaced by a cytoplasma-analogous medium). When 50 μm of the antibiotics were added externally, the fast relaxation process disappeared. Contrastingly, the slow relaxation process disappeared upon vacuolar addition. The antibiotics cannot penetrate biomembranes rapidly, and therefore, the findings suggested that the fast and slow relaxations originated exclusively from the electrical properties of the plasmalemma and the tonoplast respectively. This interpretation implies that the area-specific resistance of the tonoplast is significantly larger than that of the plasmalemma (consistent with the FCCP data) and that the area-specific capacitance of the tonoplast is unusually high (6.21 × 10−2 Fm−2 compared to 0.77 × 10−2 Fm−2 of the plasmalemma). Thus, we have to assume that the vacuolar membrane of V. utricularis is highly folded (by a factor of about 9 in relation to the geometric area) and/or contains a fairly high concentration of mobile charges of an unknown electrogenic ion carrier system. Received: 22 October 1996/Revised: 16 January 1997  相似文献   

18.
We have investigated the interaction of two peptides (ShB — net charge +3 and ShB:E12KD13K — net charge +7) derived from the NH2-terminal domain of the Shaker K+ channel with purified, ryanodine-modified, cardiac Ca2+-release channels (RyR). Both peptides produced well resolved blocking events from the cytosolic face of the channel. At a holding potential of +60 mV the relationship between the probability of block and peptide concentration was described by a single-site binding scheme with 50% saturation occurring at 5.92 ± 1.06 μm for ShB and 0.59 ± 0.14 nm for ShB:E12KD13K. The association rates of both peptides varied with concentration (4.0 ± 0.4 sec−1μm −1 for ShB and 2000 ± 200 sec−1μm −1 for ShB:E12KD13K); dissociation rates were independent of concentration. The interaction of both peptides was influenced by applied potential with the bulk of the voltage-dependence residing in Koff. The effectiveness of the inactivation peptides as blockers of RyR is enhanced by an increase in net positive charge. As is the case with inactivation and block of K+ channels, this is mediated by a large increase in Kon. These observations are consistent with the proposal that the conduction pathway of RyR contains negatively charged sites which will contribute to the ion handling properties of this channel. Received: 15 December 1997/Revised: 13 March 1998  相似文献   

19.
Co-expression of clones encoding Kir6.2, a K+ inward rectifier, and SUR1, a sulfonylurea receptor, reconstitutes elementary features of ATP-sensitive K+ (KATP) channels. However, the precise kinetic properties of Kir6.2/SUR1 clones remain unknown. Herein, intraburst kinetics of Kir6.2/SUR1 channel activity, heterologously co-expressed in COS cells, displayed mean closed times from 0.7 ± 0.1 to 0.4 ± 0.03 msec, and from 0.4 ± 0.1 to 2.0 ± 0.2 msec, and mean open times from 1.9 ± 0.4 to 4.5 ± 0.8 msec, and from 12.1 ± 2.4 to 5.0 ± 0.2 msec between −100 and −20 mV, and +20 to +80 mV, respectively. Burst duration for Kir6.2/SUR1 activity was 17.9 ± 1.8 msec with 5.6 ± 1.5 closings per burst. Burst kinetics of the Kir6.2/SUR1 activity could be fitted by a four-state kinetic model defining transitions between one open and three closed states with forward and backward rate constants of 1905 ± 77 and 322 ± 27 sec−1 for intraburst, 61.8 ± 6.6 and 23.9 ± 5.8 sec−1 for interburst, 12.4 ± 6.0 and 13.6 ± 2.9 sec−1 for intercluster events, respectively. Intraburst kinetic properties of Kir6.2/SUR1 clones were essentially indistinguishable from pancreatic or cardiac KATP channel phenotypes, indicating that intraburst kinetics per se were insufficient to classify recombinant Kir6.2/SUR1 amongst native KATP channels. Yet, burst kinetic behavior of Kir6.2/SUR1 although similar to pancreatic, was different from that of cardiac KATP channels. Thus, expression of Kir6.2/SUR1 proteins away from the pancreatic micro-environment, confers the burst kinetic identity of pancreatic, but not cardiac KATP channels. This study reports the kinetic properties of Kir6.2/SUR1 clones which could serve in the further characterization of novel KATP channel clones. Received: 12 March 1997/Revised: 5 May 1997  相似文献   

20.
Primary cultures of sea bass gill cells grown on permeable membranes form a confluent, polarized, functional tight epithelium as characterized by electron microscopy and electrophysiological and ion transport studies. Cultured with normal fetal bovine serum (FBS) and mounted in an Ussing chamber, the epithelium presents a small short-circuit current (I sc : 1.4 ± 0.3 μA/cm2), a transepithelial voltage (V t ) of 12.7 ± 2.7 mV (serosal positive) and a high transepithelial resistance (R t : 12302 ± 2477 Ω× cm2). A higher degree of differentiation and increased ion transport capacities are observed with cells cultured with sea bass serum: numerous, organized microridges characteristic of respiratory cells are present on the apical cell surface and there are increased I sc (11.9 ± 2.5 μA/cm2) and V t (25.9 ± 1.7 mV) and reduced R t (4271 ± 568 Ω× cm2) as compared with FBS-treated cells. Apical amiloride addition (up to 100 μm) had no effect on I sc . The I sc , correlated with an active Cl secretion measured as the difference between 36Cl unidirectional fluxes, was partly blocked by serosal ouabain, bumetanide, DIDS or apical DPC or NPPB and stimulated by serosal dB-cAMP. It is concluded that the chloride secretion is mediated by a Na+/K+/2Cl cotransport and a Cl/HCO3 exchanger both responsible for Cl entry through the basolateral membrane and by apical cAMP-sensitive Cl channels. This study gives evidence of a functional, highly differentiated epithelium in cultures composed of fish gill respiratorylike cells, which could provide a useful preparation for studies on ion transport and their regulation. Furthermore, the chloride secretion through these cultures of respiratorylike cells makes it necessary to reconsider the previously accepted sea water model in which the chloride cells are given the unique role of ion transport through fish gills. Received: 12 July 1996/Revised: 5 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号