首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycationic polymers have been noted for their effects in promoting cell adhesion to various surfaces, but previous studies have failed to describe a mechanism dealing with this type of adhesion. In the present study, three polycationic polymers (chitosan, poly-L-lysine, and lysozyme) were tested for their effects on microbial hydrophobicity, as determined by adhesion to hydrocarbon and polystyrene. Test strains (Escherichia coli, Candida albicans, and a nonhydrophobic mutant, MR-481, derived from Acinetobacter calcoaceticus RAG-1) were vortexed with hexadecane in the presence of the various polycations, and the extent of adhesion was measured turbidimetrically. Adhesion of all three test strains rose from near zero values to over 90% in the presence of low concentrations of chitosan (125 to 250 micrograms/ml). Adhesion occurred by adsorption of chitosan directly to the cell surface, since E. coli cells preincubated in the presence of the polymer were highly adherent, whereas hexadecane droplets pretreated with chitosan were subsequently unable to bind untreated cells. Inorganic cations (Na+, Mg2+) inhibited the chitosan-mediated adhesion of E. coli to hexadecane, presumably by interfering with the electrostatic interactions responsible for adsorption of the polymer to the bacterial surface. Chitosan similarly promoted E. coli adhesion to polystyrene at concentrations slightly higher than those which mediated adhesion to hexadecane. Poly-L-lysine also promoted microbial adhesion to hexadecane, although at concentrations somewhat higher than those observed for chitosan. In order to study the effect of the cationic protein lysozyme, adhesion was studied at 0 degree C (to prevent enzymatic activity), using n-octane as the test hydrocarbon. Adhesion of E. coli increased by 70% in the presence of 80 micrograms of lysozyme per ml. When the negatively charged carboxylate residues on the E. coli cell surface were substituted for positively charged ammonium groups, the resulting cells became highly hydrophobic, even in the absence of polycations. The observed "hydrophobicity" of the microbial cells in the presence of polycations is thus probably due to a loss of surface electronegativity. The data suggest that enhancement of hydrophobicity by polycationic polymers is a general phenomenon.  相似文献   

2.
Human mesenchymal stem cells (hMSCs) are colony‐forming unit fibroblasts (CFU‐F) derived from adult bone marrow and have significant potential for many cell‐based tissue‐engineering applications. Their therapeutic potential, however, is restricted by their diminishing plasticity as they are expanded in culture. In this study, we used N‐isopropylacrylamide (NIPAM)‐based thermoresponsive polyelectrolyte multilayer (N‐PEMU) films as culture substrates to support hMSC expansion and evaluated their effects on cell properties. The N‐PEMU films were made via layer‐by‐layer adsorption of thermoresponsive monomers copolymerized with charged monomers, positively charged allylamine hydrochloride (PAH), or negatively charged styrene sulfonic acid (PSS) and compared to fetal bovine serum (FBS) coated surfaces. Surface charges were shown to alter the extracellular matrix (ECM) structure and subsequently regulate hMSC responses including adhesion, proliferation, integrin expression, detachment, and colony forming ability. The positively charged thermal responsive surfaces improved cell adhesion and growth in a range comparable to control surfaces while maintaining significantly higher CFU‐F forming ability. Immunostaining and Western blot results indicate that the improved cell adhesion and growth on the positively charged surfaces resulted from the elevated adhesion of ECM proteins such as fibronectin on the positively charge surfaces. These results demonstrate that the layer‐by‐layer approach is an efficient way to form PNIPAM‐based thermal responsive surfaces for hMSC growth and removal without enzymatic treatment. The results also show that surface charge regulates ECM adhesion, which in turn influences not only cell adhesion but also CFU‐forming ability and their multi‐lineage differentiation potential. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
Amphiphilic cationic peptides mediate cell adhesion to plastic surfaces   总被引:2,自引:0,他引:2  
Four amphiphilic peptides, each with net charges of +2 or more at neutrality and molecular weights under 4 kilodaltons, were found to mediate the adhesion of normal rat kidney fibroblasts to polystyrene surfaces. Two of these peptides, a model for calcitonin (peptide 1, MCT) and melittin (peptide 2, MEL), form amphiphilic alpha-helical structures at aqueous/nonpolar interfaces. The other two, a luteinizing hormone-releasing hormone model (peptide 3, LHM) and a platelet factor model (peptide 4, MPF) form beta-strand structures in amphiphilic environments. Although it contains only 10 residues, LHM mediated adhesion to surfaces coated with solutions containing as little as 10 pmoles/ml of peptide. All four of these peptides were capable of forming monolayers at air-buffer interfaces with collapse pressures greater than 20 dynes/cm. None of these four peptides contains the tetrapeptide sequence Arg-Gly-Asp-Ser, which has been associated with fibronectin-mediated cell adhesion. Ten polypeptides that also lacked the sequence Arg-Gly-Asp-Ser but were nonamphiphilic and/or had net charges less than +2 at neutrality were all incapable of mediating cell adhesion (Pierschbacher and Ruoslahti, 1984). The morphologies of NRK cells spread on polystyrene coated with peptide LHM resemble the morphologies on fibronectin-coated surfaces, whereas cells spread on surfaces coated with MCT or MEL exhibit strikingly different morphologies. The adhesiveness of MCT, MEL, LHM, and MPF implies that many amphiphilic cationic peptides could prove useful as well defined adhesive substrata for cell culture and for studies of the mechanism of cell adhesion.  相似文献   

4.
Adhesion of cells to polystyrene surfaces   总被引:7,自引:2,他引:5       下载免费PDF全文
《The Journal of cell biology》1983,97(5):1500-1506
The surface treatment of polystyrene, which is required to make polystyrene suitable for cell adhesion and spreading, was investigated. Examination of surfaces treated with sulfuric acid or various oxidizing agents using (a) x-ray photoelectron and attenuated total reflection spectroscopy and (b) measurement of surface carboxyl-, hydroxyl-, and sulfur-containing groups by various radiochemical methods showed that sulfuric acid produces an insignificant number of sulfonic acid groups on polystyrene. This technique together with various oxidation techniques that render surfaces suitable for cell culture generated high surface densities of hydroxyl groups. The importance of surface hydroxyl groups for the adhesion of baby hamster kidney cells or leukocytes was demonstrated by the inhibition of adhesion when these groups were blocked: blocking of carboxyl groups did not inhibit adhesion and may raise the adhesion of a surface. These results applied to cell adhesion in the presence and absence of serum. The relative unimportance of fibronectin for the adhesion and spreading of baby hamster kidney cells to hydroxyl-rich surfaces was concluded when cells spread on such surfaces after protein synthesis was inhibited with cycloheximide, fibronectin was removed by trypsinization, and trypsin activity was stopped with leupeptin.  相似文献   

5.
To assess how cell locomotive behavior is influenced by an electrostatic interaction at the cells' contact area, locomotion speeds of mouse fibroblast, L cells, were compared on differently charged non-living substrates. These substrates were prepared by polymerizing bovine serum albumin with glutaraldehyde, and their surface charge was changed by treating them with poly- -lysine or poly- -histidine. The locomotion speeds increased with increasing negativity of the substrate charge. On the less negatively charged substrates, the cells ceased locomotion and did not alter their-positions. In spite of the diversity in the cell behavior, there was little difference in cell growth among the different substrates. When the substrates were treated with trinitrobenzene sulphonic acid (TNBS), which reacts with amino and other cationic groups, the immobilization no longer occurred. This indicates that the substrate charge is a main factor in modulating cell behavior.  相似文献   

6.
The development of large-scale suspension cell cultures using microcarriers has long been a focus of attention in the fields of pharmacy and biotechnology. Previously, we developed cell-detachable microcarriers based on temperature-responsive poly(N-isopropylacrylamide) (PIPAAm)-grafted beads, on which adhering cells can be noninvasively harvested by only reducing the temperature without the need for proteolytic enzyme treatment. In this study, to improve the cell harvest efficiency from bead surfaces while maintaining cell adhesion and proliferation properties, we prepared temperature-responsive cationic copolymer-grafted beads bearing a copolymer brush consisting of IPAAm, positively charged quaternary amine monomer (3-acrylamidopropyl trimethylammonium chloride; APTAC), and hydrophobic monomer (N-tert-butylacrylamide; tBAAm). The incorporation of positively charged APTAC into the grafted copolymer brush facilitated bead dispersibility in a cell culture system containing Chinese hamster ovary (CHO-K1) cells and consequently allowed for enhanced cell proliferation in the system compared to that of unmodified CMPS and conventional PIPAAm homopolymer-grafted beads. Additionally, P(IPAAm-co-APTAC-co-tBAAm) terpolymer-grafted beads exhibited the most rapid and efficient cell detachment behavior after the temperature was reduced to 20 °C, presumably because the highly hydrated APTAC promoted the overall hydration of the P(IPAAm-co-APTAC-co-tBAAm) chains. Therefore, P(IPAAm-co-APTAC-co-tBAAm) terpolymer-grafted microcarriers are effective in facilitating both cell proliferation and thermally induced cell detachment in a suspension culture system.  相似文献   

7.
Bacteriophage-resistant mutant strains of the root-colonizing Pseudomonas strains WCS358 and WCS374 lack the O-antigenic side chain of the lipopolysaccharide, as was shown by the loss of the typical lipopolysaccharide ladder pattern after analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These strains differed from their parent strains in cell surface hydrophobicity and in cell surface charge. The observed variation in these physicochemical characteristics could be explained by the differences in sugar composition. The mutant strains had no altered properties of adherence to sterile potato roots compared with their parental strains, nor were differences observed in the firm adhesion to hydrophilic, lipophilic, negatively charged, or positively charged artificial surfaces. These results show that neither physicochemical cell surface properties nor the presence of the O-antigenic side chain plays a major role in the firm adhesion of these bacterial cells to solid surfaces, including potato roots.  相似文献   

8.
Immobilization of molecules on surfaces is used for preparative, quantitative, and qualitative studies. Glycosaminoglycans (GAGs) are strongly hydrophilic and negatively charged molecules that do not bind well to either polystyrene surfaces or hydrophobic blotting membranes. Hydrophobic membranes were derivatized with cationic detergents to become hydrophilic and positively charged. The ability of the polyvinylidene fluoride and nitrocellulose membranes to retain GAGs increased up to 12.8 microg per spot in the dot blot assay when the membrane was treated with a cationic detergent. Immobilized GAGs were stained with alcian blue, and the staining intensity was quantitated by scanning and densitometry. The derivatized membranes were used for solid-phase extraction of GAGs in blood plasma, urine, or cerebrospinal fluid. The detection sensitivity was equal for different types of GAGs but there was a slight negative interference from fibrinogen in blood plasma. The immobilized GAGs could also be released from the membrane using a nonionic detergent at high ionic strength. Recovery of different proteoglycan populations, separated by electrophoresis and detected by reversible staining with toluidine blue, was 70-100%.  相似文献   

9.
The effects of cyclic nucleotides, and physiologically related substances, on the initial adhesion of three groups of cells to protein covered plastic surfaces in vitro, was studied over periods of up to 2 h. The rate of adhesion of Ehrlich ascites tumour (EAT) cells was decreased in the presence of prostaglandin F and dibutyryl cyclic AMP; possibly decreased by PGE1; increased in the presence of sodium fluoride, and unaffected by PGF. Trypsinized EAT cells showed no adhesion-response to PGE1 or PGF, and generally a lesser degree of response to the other reagents than non-trypsinized EAT cells. L929 cells, following trypsin-treatment, showed a significant decrease in adhesion rate, only on culture in the presence of PGF.The inhibition of initial adhesion in the responding cells, may be correlated with the assays of others and interpreted to indicate that increase in intracellular cyclic nucleotides is associated with decreased initial cell adhesion. The failure of the L929 to respond to at least some of the reagents is possibly partly due to their prior incubation with trypsin.  相似文献   

10.
The topography of the charged residues on the endothelial cell surface of liver sinusoid capillaries was investigated by using electron microscopic tracers of different size and charge. The tracers used were native ferritin (pl 4.2-4.7) and its cationized (pl 8.4) and anionized (pl 3.7) derivatives, BSA coupled to colloidal gold (pl of the complex 5.1), hemeundecapeptide (pl 4.85), and alcian blue (pl greater than 10). The tracers were either injected in vivo or perfused in situ through the portal vein of the mouse liver. In some experiments, two tracers of opposite charge were sequentially perfused with extensive washing in between. The liver was processed for electron microscopy and the binding pattern of the injected markers was recorded. The electrostatic nature of the tracer binding was assessed by perfusion with high ionic strength solutions, by aldehyde quenching of the plasma membrane basic residues, and by substituting the cell surface acidic moieties with positively charged groups. Results indicate that the endothelial cells of the liver sinusoids expose on their surface both cationic and anionic residues. The density distribution of these charged groups on the cell surface is different. While the negative charge is randomly and patchily scattered all over the membrane, the cationic residues seem to be accumulated in coated pits. The charged groups co-exist in the same coated pit and bind the opposite charged macromolecule. It appears that the fixed positive and negative charges of the coated pit glycocalyx are mainly segregated in space. The layer of basic residues is located at 20-30-nm distance of the membrane, while most of the negative charges lie close to the external leaflet of the plasmalemma.  相似文献   

11.
The interaction of cells and tissues with artificial materials designed for applications in biotechnologies and in medicine is governed by the physical and chemical properties of the material surface. There is optimal cell adhesion to moderately hydrophilic and positively charged substrates, due to the adsorption of cell adhesion-mediating molecules (e.g. vitronectin, fibronectin) in an advantageous geometrical conformation, which makes specific sites on these molecules (e.g. specific amino acid sequences) accessible to cell adhesion receptors (e.g. integrins). Highly hydrophilic surfaces prevent the adsorption of proteins, or these molecules are bound very weakly. On highly hydrophobic materials, however, proteins are adsorbed in rigid and denatured forms, hampering cell adhesion. The wettability of the material surface, particularly in synthetic polymers, can be effectively regulated by physical treatments, e.g. by irradiation with ions, plasma or UV light. The irradiation-activated material surface can be functionalized by various biomolecules and nanoparticles, and this further enhances its attractiveness for cells and its effectiveness in regulating cell functions. Another important factor for cell-material interaction is surface roughness and surface topography. Nanostructured substrates (i.e. substrates with irregularities smaller than 100nm), are generally considered to be beneficial for cell adhesion and growth, while microstructured substrates behave more controversially (e.g. they can hamper cell spreading and proliferation but they enhance cell differentiation, particularly in osteogenic cells). A factor which has been relatively less investigated, but which is essential for cell-material interaction, is material deformability. Highly soft and deformable substrates cannot resist the tractional forces generated by cells during cell adhesion, and cells are not able to attach, spread and survive on such materials. Local variation in the physical and chemical properties of the material surface can be advantageously used for constructing patterned surfaces. Micropatterned surfaces enable regionally selective cell adhesion and directed growth, which can be utilized in tissue engineering, in constructing microarrays and in biosensorics. Nanopatterned surfaces are an effective tool for manipulating the type, number, spacing and distribution of ligands for cell adhesion receptors on the material surface. As a consequence, these surfaces are able to control the size, shape, distribution and maturity of focal adhesion plaques on cells, and thus cell adhesion, proliferation, differentiation and other cell functions.  相似文献   

12.
Cationic liposomal lipids: from gene carriers to cell signaling   总被引:2,自引:0,他引:2  
Cationic lipids are positively charged amphiphilic molecules which, for most of them, form positively charged liposomes, sometimes in combination with a neutral helper lipid. Such liposomes are mainly used as efficient DNA, RNA or protein carriers for gene therapy or immunization trials. Over the past decade, significant progress has been made in the understanding of the cellular pathways and mechanisms involved in lipoplex-mediated gene transfection but the interaction of cationic lipids with cell components and the consequences of such an interaction on cell physiology remains poorly described. The data reported in the present review provide evidence that cationic lipids are not just carriers for molecular delivery into cells but do modify cellular pathways and stimulate immune or anti-inflammatory responses. Considering the wide number of cationic lipids currently available and the variety of cellular components that could be involved, it is likely that only a few cationic lipid-dependent functions have been identified so far.  相似文献   

13.
Up to now, most of the studies addressing the critical roles played by protrusive and contractile cell-matrix contacts in cell adhesion, guidance, migration, matrix assembly, and activation of signaling molecules have been performed on two-dimensional surfaces. Here, we analysed the organization of chondrosarcoma cell contacts in a new three-dimensional environment made of titanium beads. Surface charges were modified by deposition of polyelectrolyte multilayer films built up by alternated polycations poly-(L-lysine) or poly(allylamine hydrochloride) and polyanions poly-(L-glutamic acid) or poly(sodium 4-styrenesulfonate). Negatively charged 3-D titanium surfaces amplified the occurrence and length of cell protrusions. These protrusions had pseudopod characteristics extended to 200 microm in length, growing off the substratum to distant beads. Pseudopod formation is inhibited by the exocytosis inhibitor concanamycin A and is triggered by a secreted factor. Chondrosarcoma cells adhering on uncoated or on negatively charged surfaces contained discrete focal spots of vinculin and actin cables. In cells plated onto these surfaces, phosphorylation of p44/42 MAPK/ERK was twofold increased. In contrast, no cytoskeletal vinculin and actin organization was observed when the surface was positively charged. These data suggest that chondrosarcoma cells adapt a more stable adhesion on uncoated or negatively charged surfaces. This point may be critical in tissue engineering strategies designed for cartilage repair.  相似文献   

14.
The relationship between physiochemical surface parameters and adhesion of bacterial cells to negatively charged polystyrene was studied. Cell surface hydrophobicity and electrokinetic potential were determined by contact angle measurement and electrophoresis, respectively. Both parameters influence cell adhesion. The effect of the electrokinetic potential increases with decreasing hydrophobicity. Cell surface characteristics determining adhesion are influenced by growth conditions. At high growth rates, bacterial cells tend to become more hydrophobic. This fact can be of ecological significance for controlling the spread of bacteria throughout the environment.  相似文献   

15.
The relationship between physiochemical surface parameters and adhesion of bacterial cells to negatively charged polystyrene was studied. Cell surface hydrophobicity and electrokinetic potential were determined by contact angle measurement and electrophoresis, respectively. Both parameters influence cell adhesion. The effect of the electrokinetic potential increases with decreasing hydrophobicity. Cell surface characteristics determining adhesion are influenced by growth conditions. At high growth rates, bacterial cells tend to become more hydrophobic. This fact can be of ecological significance for controlling the spread of bacteria throughout the environment.  相似文献   

16.
The surfaces of the isolated cell walls of four bacterial species were studied by microelectrophoresis following chemical treatments intended to remove specific charged groups. Acid-base titrations of the walls were used to assess specificity and extent of the modifications. Carboxyl groups were specifically and completely modified by activation with a water-soluble carbodiimide and subsequent reaction with a nucleophile, such as glycinamide, to give an uncharged pH-stable product. Aqueous media and mild reaction conditions make the method suitable for modifying carboxyl groups on cell surfaces too labile to withstand the harsh conditions required for conventional esterification reactions. Use of the carbodiimide-mediated reaction for discharging carboxyl groups, along with fluorodinitrobenzene for discharging amino groups and extraction procedures for removing constituents carrying phosphoester groups (teichoic acids), made it possible to obtain information about the spatial arrangement of charged groups on the wall surfaces. Removal of the exterior negative charge dominating wall surfaces allowed underlying amino groups to become electrokinetically effective and, in the case of E. coli, also revealed a lipophilic region with an affinity for a cationic surfactant.  相似文献   

17.
The aim of the present study was to evaluate the inhibitory effect on protein kinase Ca (PKCα) neosynthesis of antisense oligonucleotides delivered by two types of carriers. First, PKCα antisense oligonucleotides were associated with polyisobutylcyanoacrylate (PIBCA) nanoparticles pre-coated with cetyltrimethyl ammonium bromide (CTAB), a hydrophobic cation. Adsorption of oligonucleotides onto PIBCA nanoparticles was shown to be a saturating process. From these studies, it was possible to identify two types of particles: positively and negatively charged. Secondly, Lipofectin® was used as another carrier system. These systems were incubated with HepG2 cells. Toxicity was evaluated by the MTT assay, and PKCα neosynthesis was determined by Western blots in conditions where nanoparticles and Lipofectin® were not inducing cytotoxicity. It was observed that both mismatch and antisense oligonucleotides induced an inhibition of PKCa neosynthesis when loaded onto cationic or anionic nanoparticles as well as when complexed to cationic liposomes (Lipofectin®). This non-specific effect was only observed in the phase of PKCα neosynthesis when the cells were first depleted in PKCa by phorbol 12-myristate β-acetate (12-PMA) and in the absence of serum. These results strongly suggest that delivery systems, PIBCA nanoparticles or Lipofectin®, containing a positively charged component (CTAB or cationic lipids), are able to induce a perturbation in the intracellular metabolic activity. In conclusion, it was shown that the commonly used strategy of oligonucleotides targeting with cationic non-viral vectors may display non-specific effects which can lead to artifactual results.  相似文献   

18.
HeLa-S3 cells were analyzed for their ability to attach and spread on cell culture microcarriers that were made either positively or negatively charged with polymeric plastics or were coated with BSA, gelatin, fibronectin or laminin. The cells stuck to all microcarriers under low shear, i.e. low stirring conditions with similar rates of attachment. Except in the case of gelatin microcarriers where cells fully spread, cells did not or only partially spread on the others. Under high shear, cells attached with the following rates: positive = negative = gelatin = BSA greater than laminin greater than fibronectin. Cells detached from all but the gelatin and BSA coated beads. However, the cells did not fully spread on BSA beads. The observation that cells not only attached but also spread on gelatin beads indicated that gelatin could be a specific substratum adhesion protein while the other surfaces were 'non-specific'. It should be noted that neither antibodies to laminin nor fibronectin interfered with attachment to gelatin. Protein synthesis inhibitors reduced the attachment and spreading on gelatin beads under high but not low shear conditions. With low shear, attachment and spreading appeared normal. We concluded that the density of the cell surface attachment proteins was reduced by the protein synthesis inhibitors and there were not enough present to facilitate attachment under high shear. The results also indicated that protein synthesis was not essential for cell spreading. Proteolysis of the cell surface with low concentrations of trypsin abolished the attachment of cells to gelatin-coated beads. The reappearance of attachment ability took several hours and was inhibited by actinomycin-D.  相似文献   

19.
By binding cationized ferritin (CF) to the plasma membrane of primary human fibroblasts, the amount and topology of negatively charged sites on cell surfaces were studied after X-irradiation. The CF binding was tested both on fixed and unfixed cells. Using various enzymes, the chemical nature of sites carrying the negative charges on cell surfaces was investigated. The results suggest that in unirradiated fibroblasts the CF binding occurred in a polarized manner, i.e. the particles were localized mainly on the apical surface of cells and formed clusters. The thin cytoplasmic protrusions and cell-to-cell contact sites bound CF to a greater extent than the bleb-like formations. Enzymatic digestion of surface polysaccharides showed that the main carriers of negatively charged sites are the glycosaminoglycans associated with the cell surface. The fixation of cells with glutaraldehyde did not influence the topology of CF binding either before or after the enzymatic treatment. After X-irradiation with 2.5 Gy the topology of CF binding did not change but the CF coverage of cells as well as the amount of ferritin particles per unit of surface area decreased within 10 min. The changes proved to be reversible as the values reached the pre-irradiation level by 1 h after irradiation.  相似文献   

20.
Metastasis mechanisms depend on cell metabolism changes, migration and adhesion to different tissues. To understand their choice of interaction site, the tumoral cell adhesion to model surfaces was studied. The response of Caco-2 tumoral cells cultured on polyelectrolyte film-functionalized surfaces with or without adhesion proteins (fibronectin or collagen IV) was analyzed. Using the layer-by- layer method, multilayer films were prepared with cationic poly(allylamine hydrochloride) and anionic poly(sodium 4-styrenesulfonate) polyelectrolytes. Film surface wettability was evaluated. The electrochemical impedance spectroscopy analyses were carried out to control the elaborated surfaces on which Caco-2 tumoral cells were cultured. The cell velocity was studied by video-microscopy and a cell colorimetric assay (WST-1) was used to quantify cell viability. The film surface parameters as well as the protein nature and localization in the film were found to modulate cell response. Results demonstrated that the cancer cell motility and proliferation were higher when cultured onto pure collagen located above the polyelectrolyte film and that the reverse surprisingly was observed when proteins were inserted into the polyelectrolyte film. Data also showed that cell motility was correlated with a high charge transfer resistance (Rct) and a low surface free energy (SFE) polar component (electron donor character). This relationship was valid only for pure external proteins. Thus, fibronectin exhibited a low Rct and a high SFE polar component, which decreased cell motility and proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号