首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent ADP analog, ε-ADP (1:N6-ethenoadenosine 5′-diphosphate), was incorporated into F-actin in a myosin-free ghost single fiber and polarized fluorescence measurements were performed under a microspectrophotometer to investigate the conformation of F-actin and the changes induced in it by heavy meromyosin and subfragment-1. Four components of polarized fluorescence were obtained by exciting the fiber with light polarized parallel and perpendicular to the long axis of the fiber and measuring the intensity of emission polarized parallel and perpendicular. From these data it was shown that F-actin in the fiber was not rigid but flexible, with a value for the elastic modulus for bending of 5.3 × 10?17 dyn cm2. The angles of absorption dipole and emission dipole of bound ε-ADP with the long axis of F-actin were both about 75 °.The binding of heavy meromyosin decreased the elastic modulus of F-actin by 30% and the angles of absorption and emission dipoles by 2.5 ° and 1.5 °, respectively. The molar ratios of bound heavy meromyosin and subfragment-1 to actin in the ghost fiber at saturation were 0.3 and 0.6, respectively, being smaller than those in solution.  相似文献   

2.
Shibata Y  Saga Y  Tamiaki H  Itoh S 《Biochemistry》2007,46(23):7062-7068
The polarization anisotropy of fluorescence from single chlorosomes isolated from a green filamentous bacterium, Chloroflexus aurantiacus, was measured using a confocal laser microscope at 13 K. Each single chlorosome that is floating in a frozen solvent exhibited strong polarization anisotropy of fluorescence. We calculated the degrees of fluorescence polarization for 51 floating single chlorosomes. The value ranged from 0.1 to 0.76 for the BChl-c aggregate in the core chlorosomes and from 0 to 0.4 for the energy acceptor BChl-a in the baseplate protein in the outer membrane. The shifts in polarization angles between the two emission bands were distributed over all the possible values with a sharp peak around 90 degrees , suggesting the perpendicular orientation between the transition dipoles of the fluorescence emission from the BChl-c aggregate and that from BChl-a. A simulation assuming a random orientation of chlorosomes reproduced the experimental results exactly. The analysis further indicated the appreciable contribution of the transition dipole of BChl-c that has an orientation perpendicular to the major polarization axis in each chlorosome. Small values of the degrees of polarization implied the BChl-a transition dipole to be somewhat tilted with respect to the normal of the cytoplasmic membrane to which chlorosomes are attached. These conclusions can be obtained only by observing the fluorescence of single chlorosomes.  相似文献   

3.
Fluorescently labeled myosin heads (S1) were added to muscle fibers and myofibrils at various concentrations. The orientation of the absorption dipole of the dye with respect to the axis of F-actin was calculated from polarization of fluorescence which was measured by a novel method from video images of muscle. In this method light emitted from muscle was split by a birefringent crystal into two nonoverlapping images: the first image was created with light polarized in the direction parallel to muscle axis, and the second image was created with light polarized in the direction perpendicular to muscle axis. Images were recorded by high-sensitivity video camera and polarization was calculated from the relative intensity of both images. The method allows measurement of the fluorescence polarization from single myofibril irrigated with low concentrations of S1 labeled with dye. Orientation was also measured by fluorescence-detected linear dichroism. The orientation was different when muscle was irrigated with high concentration of S1 (molar ratio S1:actin in the I bands equal to 1) then when it was irrigated with low concentration of S1 (molar ratio S1:actin in the I bands equal to 0.32). The results support our earlier proposal that S1 could form two different rigor complexes with F-actin depending on the molar ratio of S1:actin.  相似文献   

4.
Examination was made of changes in fluorescence polarization plane by energy transfer in the chlorosomes of the green photosynthetic bacterium,Chloroflexus aurantiacus. Fluorescence anisotropy in the picosecond (ps) time region was analyzed using chlorosomes suspended in solution as well as those oriented in a polyacrylamide gel. When the main component of BChlc was preferentially excited, the decay of fluorescence anisotropy was found to depend on wavelength. In the chlorosome suspension, the anisotropy ratio of BChlc changed from 0.31 to 0.24 within 100 ps following excitation. In the baseplate BChla region, this ratio decreased to a negative value (–0.09) from the initial 0.14. In oriented samples, the degree of polarization remained at 0.68 for BChlc, and changed from 0.25 to –0.40 for the baseplate BChla by excitation light whose electric vector was parallel to the longest axis of chlorosomes. In the latter case, there was a shift from 0.30 to –0.55 by excitation perpendicular to the longest axis. Time-resolved fluorescence polarization spectra clearly indicated extensive changes in polarization plane accompanied by energy transfer. The directions of polarization plane of emission from oriented samples were mostly dependent on chlorosome orientation in the gel but not on that of the polarization plane of excitation light. Orientations of the dipole moment of fluorescence components was consistent with that of absorption components as determined by the linear dichroism (Matsuura et al. (1993) Photochem. Photobiol. 57: 92–97). A model for molecular organization of BChlc anda in chlorosomes is proposed based on anisotropic optical properties.  相似文献   

5.
Dynamics studies on tryptophan residues of human alpha 1-acid glycoprotein (orosomucoid) and of 2-p-toluidinylnaphthalene-6-sulfonate bound to the protein are performed. Excitation at the red edge of the absorption spectrum of the tryptophan does not lead to a shift of the fluorescence emission maximum of the fluorophore. This reveals that Trp residues present motions with respect to their microenvironment. This is confirmed by polarization studies as a function of temperature. Excitation at the red edge of the absorption spectrum of TNS leads to an important shift (15 nm) of the fluorescence emission maximum of the probe. This reveals that emission of TNS occurs before relaxation of the amino-acids dipole occurs. Emission from a non-relaxed state means that TNS molecules are bound tightly to the protein, a result confirmed by polarization studies.  相似文献   

6.
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.  相似文献   

7.
We observed optical rotation of the plane of polarization of the second harmonic (SH) radiation at 532 nm (in resonance with the retinal absorption) generated in reflection geometry in Langmuir-Blodgett film of bacteriorhodopsin (bR). The analysis of the experimental data showed that this effect arises from the nonvanishing contribution of the antisymmetrical part of the hyperpolarizability tensor. This requires that the dipole moment of the resonant electronic transition, the change of the dipole moment upon electronic excitation, and the long axis of the retinal not be coplanar. Such conditions are satisfied only if the retinal has a nonplanar geometry, a conclusion that could lend support to the heterogeneity model of the origin of the biphasic band shape of the linear CD spectrum of the retinal in bR. On the basis of our theoretical analysis, we were able to estimate the angle between the induced dipole moment and the plan that contains the long axis of the chromophore and the transition dipole moment of the retinal absorption.  相似文献   

8.
Electron micrographs show the small (30 S) subunit of Escherichia coli ribosomes lying in a wide range of positions on the specimen support, related by rotation principally around the long axis of the particle. Through correspondence analysis, a multivariate statistical method that distinguishes the major factors accounting for interimage variance, the (aligned) views of the randomly oriented particles were ordered and grouped according to tilt angle. Views so grouped were then averaged and used as input to a three-dimensional reconstruction program.The particle reconstructed from nine averaged projections spanning a 160 ° rotational range has a resolution of 5 nm in planes perpendicular to the long axis of the particle and ~ 3 nm in the direction of the long axis. It is somewhat asymmetrical and quite compact; its most conspicuous feature is the “platform” that wraps partially around the middle of the subunit.  相似文献   

9.
The transfer of excitation energy and the pigment arrangement in isolated chlorosomes of the thermophilic green bacterium Chloroflexus aurantiacus were studied by means of absorption, fluorescence and linear dichroism spectroscopy, both at room temperature and at 4 K. The low temperature absorption spectrum shows bands of the main antenna pigments BChl c and carotenoid, in addition to which bands of BChl a are present at 798 and 613 nm. Fluorescence measurements showed that excitation energy from BChl c and carotenoid is transferred to BChl a, which presumably functions as an intermediate in energy transfer from the chlorosome to the cytoplasmic membrane. Measurements of fluorescence polarization and the use of two different orientation techniques for linear dichroism experiments enabled us to determine the orientation of several transition dipole moments with respect to each other and to the three principal axes of the chlorosome. The Qy transition of BChl a is oriented almost perfectly perpendicular to the long axis of the chlorosome. The Qy transition of BChl c and the -carotene transition dipole are almost parallel to each other. They make an angle of about 40° with the long axis and of about 70° with the short axis of the chlorosome; the angle between these transitions and the BChl a Qy transition is close to the magic angle (55°).Abbreviations BChl bacteriochlorophyll - CD circular dichroism - LD linear dichroism Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

10.
Amyloid fibrils are a polymeric form of protein, involving a continuous beta-sheet with the strands perpendicular to the long axis of the fibril. Although typically implicated in diseases such as Alzheimer's disease and the transmissible spongiform encephalopathies, non disease-associated protein can also be converted into amyloid fibrils. Traditionally, amyloid fibrils are identified via the use of specific dyes such as Congo red and thioflavin-T, although their specificity is ill understood. Recently, solutions of bovine insulin and bovine beta-lactoglobulin have been found to form spherulites, micron-sized spherical structures containing radially arranged amyloid fibrils. When studied by confocal microscopy using polarised laser light and thioflavin-T, a consistent pattern of emission, rather than a uniform disc, was observed. This suggests the dye binds in a specific, regular fashion to amyloid fibrils. Confocal microscopy studies of thioflavin-T aligned in stretched poly-vinyl alcohol films showed that the dye dipole excitation axis lies parallel to the long molecular axis. Therefore, thioflavin-T binds to amyloid fibrils such that their long axes are parallel. We propose binding occurs in 'channels' that run along the length of the beta-sheet. Steric interactions between dye molecules and side chains indicate why thioflavin-T fluoresces more intensely when bound to amyloid fibrils and can explain why this interaction with amyloid fibrils is specific, but with varying efficiency.  相似文献   

11.
Fluorescence energy transfer between nucleotide binding sites in an F-actin filament was measured using 1-N6-ethenoadenosine diphosphate (epsilon-ADP) as a fluorescent donor and 2'(or 3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) as an acceptor, both of which were bound to F-actin. Taking into consideration the helical structure of the F-actin filament, the radial coordinate of the nucleotide binding site was calculated to be 25 A, which corresponds to a distance between these sites along the long-pitch helix of 56.3 A and along the genetic helix of 56.7 A.  相似文献   

12.
Intramonomer fluorescence resonance energy transfer between the donor epsilon-ATP bound to the nucleotide site and the acceptor N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) or 4-dimethylaminophenyl-azophenyl-4'-maleimide bound to Cys-10 in G-actin was measured. The donor-acceptor distance was calculated to be about 40 A. The intermonomer energy transfer in F-actin occurring between epsilon-ADP and DABMI was also measured. The radial coordinate of Cys-10 was calculated to be 25 A based on the helical symmetry of F-actin and the recently calculated radial coordinate of the nucleotide binding site in F-actin i.e. 25 A (Miki, M., Hambly, B. and dos Remedios, C.G. (1986) Biochim. Biophys. Acta 871, 137-141). (The assumption has been made in calculating these distances that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime.) Corresponding distances separating the donor nucleotide in one monomer from acceptors on Cys-10 in the first and second nearest neighbours in F-actin are 39-40 A and 41-43 A.  相似文献   

13.
The fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles is a function of the physical state of the lipid. Below the phase transition, the polarization approaches the theoretical maximum for total immobilization while above the phase transition the fluorescence becomes nearly completely depolarized. The discontinuity in the temperature dependence of polarization occurs within a temperature range under 5 degrees C in the case of pure phospholipids, but for mixed phospholipids occurs over a temperature range greater than 20 degrees C. From these data, phase diagrams describing the gel-sol equilibrium can be constructed; the phase diagrams correspond well with those described in the literature which were constructed using spin-label probes or from x-ray diffraction patterns. The marked change in polarization at the phase transition may be related to the packing of the probe molecule into the lipid bilayer: fluorescence measurements on oriented bilayers indicate that below the phase transition the long axis of the probe is oriented perpendicular to the plane of the membrane while above the transition the probe is oriented randomly relative to the plane of the membrane.  相似文献   

14.
Nicotinamide 1,N6-ethenoadenine dinucleotide (etheno-NAD, epsilon-NAD), a fluorescent analogue of NAD, was able to serve as a substrate for the bacterial toxin-catalyzed epsilon-ADP ribosylation of signal-transducing G-proteins. Pertussis toxin and transducin were used as a model system to characterize this reaction. Similar to ADP ribosylation using NAD as substrate, the epsilon-ADP ribosylation occurs at the carboxyl-terminal 5-kDa tryptic fragment of the T alpha subunit of transducin with the same labeling stoichiometry; however, the rate of labeling is slightly slower. epsilon-NAD competes with NAD as a substrate which suggests that the epsilon-ADP ribosylation occurs at Cys-347 of the T alpha subunit. The biochemical effects of epsilon-ADP ribosylation on transducin are similar to those of ADP ribosylation and include inhibition of the GTPase and [3H]Gpp(NH)p-binding activities. The epsilon-ADP-ribosylated transducin exhibits a fluorescent spectrum which resembles that of epsilon-ADP with an excitation maximum at 292 nm and an emission maximum of 413 nm. Removal of the amino-terminal peptide of epsilon-ADP-ribosylated T alpha with either Staphylococcus aureus V8 protease or trypsin results in a decrease in the emission intensity. This result suggests that the amino- and carboxyl-terminal peptides of the T alpha molecule may interact with each other as suggested previously (Hingorani, V. N., and Ho, Y.-K. (1987) FEBS Lett. 220, 15-22). epsilon-NAD should prove to be a useful fluorescent substrate for future studies of the ADP ribosylation reaction in biological systems.  相似文献   

15.
P S Ho  G W Zhou  L B Clark 《Biopolymers》1990,30(1-2):151-163
Polarized electronic absorption spectra of the (100) face of single crystals of the Z-form double helical duplex of d(m5CGUAm5CG) have been obtained from Kramers-Kronig analysis of reflection data. The c crystallographic axis is parallel to the helix axis and shows but weak absorption. The b axis is perpendicular to the helix axis and shows a structureless absorption band centered at 270 nm with an oscillator strength of 0.26. Calculations of the crystal spectra utilizing available transition moment data for the individual chromophores are carried through using the oriented gas model (no interbase interactions) and, again, employing all base-base interactions (point dipole) in the duplex. The calculated hypochromism of the 270 nm band is much less than the experimental value obtained from the crystal data. The crystal spectra appear to be representative of Z-form double helices of essentially infinite length and not of a collection of twelve base duplexes. No evidence for n pi* transitions polarized parallel to the helix axis is found.  相似文献   

16.
Dougherty WJ 《Tissue & cell》1987,19(1):145-152
Estimates of the degree of orientation of spermatozoa within spermatophores of the freshwater shrimp, Macrobrachium rosenbergii, were made using electron micrographs of ultrathin sections cut transverse and parallel to the longitudinal axis of the spermatophores. Counts of the total number of longitudinal and non-longitudinal profiles of sperm spikes in transverse sections of spermatophores indicated that 67% of the spermatozoa were oriented with their spikes approximately perpendicular to the long axis of the spermatophore. In longitudinal sections, ~30% of the sperm spike profiles were oriented parallel to the longitudinal axis of the spermatophore, leaving ~70% of the profiles oriented in planes not parallel to the longitudinal spermatophore axis. Stereologic analyses based on the number of intersections of longitudinally sectioned sperm spike profiles per unit length of test lines placed over photographic images of ultrathin sections cut in both transverse and longitudinal planes of spermatophores gave a Saltykov approximation of 0.607, favoring the view that the spermatozoa were oriented with their spikes perpendicular to the long axis of the spermatophore. This orientation brings many of the sperm bases approximately parallel to the surface of the spermatophore, an orientation which may facilitate normal sperm-egg interaction during fertilization in this species.  相似文献   

17.
The structural changes of phalloidin-rhodamin labelled F-actin at relaxed and contracted skeletal muscle fibre containing phosphorylated myosin and at contracted state after dephosphorylation were investigated by measuring of polarized fluorescence of the fluorophore. The mechanical properties (isometric tension development) of fibre were studied in parallel. At submaximal concentration of Ca ions (0.6 mumol/l) the isometric tension was decreased after dephosphorylation of fibre myosin. The changes in polarization of fluorophore bound to actin filament were correlated with isometric tension developed by the muscle fibre. The angles between the actin filament long axis and the absorption and emission dipoles for contracted and relaxed fibre were different, suggesting changes in the organization of the actin monomers in thin filament, dependent on the physiological state of the fibre. The flexibility of the thin filaments during transition of the fibre from relaxed to "contracted" state increases as indicated by greater average angle between the F-actin long axis and the fibre axis.  相似文献   

18.
1D nanostructures of soft ferroelectric materials exert promising potential in the fields of energy harvesting and flexible and printed nanoelectronics. Here, improved piezoelectric properties, energy‐harvesting performance, lower coercive fields, and the polarization orientation of poly(vinylidene fluoride–trifluoroethylene) (PVDF‐TrFE) nanotubes synthesized with nanoconfinement effect are reported. X‐ray diffraction (XRD) patterns of the nanotubes show the peak corresponding to the planes of (110)/(200), which is a signature of ferroelectric beta phase formation. Piezoforce spectroscopy measurements on the free‐standing horizontal nanotubes bundles reveal that the effective polarization direction is oriented at an inclination to the long axis of the nanotubes. The nanotubes exhibit a coercive field of 18.6 MV m?1 along the long axis and 40 MV m?1 (13.2 MV m?1 considering the air gap) in a direction perpendicular to the long axis, which is lower than the film counterpart of 50 MV m?1. The poled 200 nm nanotubes, with 40% reduction in poling field, give larger piezoelectric d33 coefficient values of 44 pm V?1, compared to poled films (≈20 pm V?1). The ferroelectric nanotubes deliver superior energy harvesting performance with an output voltage of ≈4.8 V and power of 2.2 μW cm?2, under a dynamic compression pressure of 0.075 MPa at 1 Hz.  相似文献   

19.
The fluorescence spectra of several dansyl derivatives (dansylamide, ?-N-dansyl-l-lysine, dansyl-l-alanine, and α-N-dansyl-l-alanine amide) bound to anti-dansyl antibodics (induced by an α-N-dansyl-poly d,l-alanine-poly l-lysine conjugate) are shifted by about 60 nm to the blue, and the quantum yields are markedly enhanced, compared to their respective fluorescence properties in water. The light emitted by the bound haptens is partly circularly polarized, reflecting the asymmetry induced in the bound chromophores by the antibody combining site. In contradistinction, the fluorescence spectrum of 1-dansyl-2-alanine diaminoethane bound to anti-alanine antibodies is similar to that of the free fluorophore in water and lacks circular polarization. These results imply that in this case the fluorophore of the hapten protrudes out of the site into the aqueous solvent. No circular dichroism is observed in the 300 to 400 nm region for the dansyl-anti-dansyl complex. Thus a change in the mode of interaction between the chromophore and its binding site takes place upon electronic excitation. The heterogeneity of the antibody binding sites is expressed by the dependence of the circular polarization of fluorescence on excitation wavelength. Differences in the circular polarization of luminescence were also observed when the residues attached to the dansyl group have been varied. This may reflect differences in the alignment of the fluorophore within the binding sites for the different dansyl derivatives.The linear polarization of dansylamide dissolved in glycerol is not constant across the emission band, indicating that the transition dipole moments related to the various vibronic states do not have the same spatial directions. Vibronic mixing of the emitting excited state with higher electronic states is thus indicated. Dansyl-l-alanine bound to anti-dansyl antibodies exhibitsan even more pronounced variation of the linear polarization across the emission band. In this case, the dependence of the linear polarization of the emitted light on excitation wavelength is anomalous, which is again a reflection of the heterogeneity of the population of the antibody molecules. The implications of these results to the studies of the fluorescence polarization of dansyl-protein complexes are discussed.  相似文献   

20.
The orientation of proteins in ordered biological samples can be investigated using steady-state polarized fluorescence from probes conjugated to the protein. A general limitation of this approach is that the probes typically exhibit rapid orientational motion ("wobble") with respect to the protein backbone. Here we present a method for characterizing the extent of this wobble and for removing its effects from the available information about the static orientational distribution of the probes. The analysis depends on four assumptions: 1) the probe wobble is fast compared with the nanosecond time scale of its excited-state decay; 2) the orientational distributions of the absorption and emission transition dipole moments are cylindrically symmetrical about a common axis c fixed in the protein; 3) protein motions are negligible during the excited-state decay; 4) the distribution of c is cylindrically symmetrical about the director of the experimental sample. In a muscle fiber, the director is the fiber axis, F. All of the information on the orientational order of the probe that is available from measurements of linearly polarized fluorescence is contained in five independent polarized fluorescence intensities measured with excitation and emission polarizers parallel or perpendicular to F and with the propagation axis of the detected fluorescence parallel or perpendicular to that of the excitation. The analysis then yields the average second-rank and fourth-rank order parameters ( and ) of the angular distribution of c relative to F, and and , the average second-rank order parameters of the angular distribution for wobble of the absorption and emission transition dipole moments relative to c. The method can also be applied to other cylindrically ordered systems such as oriented lipid bilayer membranes and to processes slower than fluorescence that may be observed using longer-lived optically excited states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号