首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron alters glutamate secretion by regulating cytosolic aconitase activity   总被引:2,自引:0,他引:2  
Glutamate has many important physiological functions, including its role as a neurotransmitter in the retina and the central nervous system. We have made the novel observations that retinal pigment epithelial cells underlying and intimately interacting with the retina secrete glutamate and that this secretion is significantly affected by iron. In addition, iron increased secretion of glutamate in cultured lens and neuronal cells, indicating that this may be a common mechanism for the regulation of glutamate production in many cell types. The activity of the iron-dependent enzyme cytosolic aconitase (c-aconitase) is increased by iron. The conversion of citrate to isocitrate by c-aconitase is the first step in a three-step process leading to glutamate formation. In the present study, iron increased c-aconitase activity, and this increase was associated with an increase in glutamate secretion. Inhibition of c-aconitase by oxalomalate decreased glutamate secretion and completely inhibited the iron-induced increase in glutamate secretion. Derangements in both glutamate secretion and iron metabolism have been noted in neurological diseases and retinal degeneration. Our results are the first to provide a functional link between these two physiologically important substances by demonstrating a significant role for iron in the regulation of glutamate production and secretion in mammalian cells resulting from iron regulation of aconitase activity. Glutamatergic systems are found in many nonneuronal tissues. We provide the first evidence that, in addition to secreting glutamate, retinal pigment epithelial cells express the vesicular glutamate transporter VGLUT1 and that regulated vesicular release of glutamate from these cells can be inhibited by riluzole. retinal pigment epithelial cells; lens epithelial cells  相似文献   

2.
We showed recently that secretion of glutamate in biotin-limited cells of Corynebacterium glutamicum is mediated by carrier systems in the plasma membrane (C. Hoischen and R. Kr?mer, Arch. Microbiol. 151:342-347, 1989). In view of the generally accepted hypothesis that glutamate efflux is directly caused by alterations of the membrane, it was necessary to examine the kind of correlation between changes in lipid content and composition of the bacterial membrane and glutamate secretion activity. Two new experimental approaches were used. (i) Changes in lipid content and composition were analyzed in glutamate-producing cells which were forced to switch to nonproducers by addition of biotin in a short-term fermentation. (ii) The time courses of both the fatty acid or phospholipid composition and the efflux activity were analyzed within the first minutes of the switch from high to low secretion activity. The following results were obtained. (i) The time course of the change in fatty acid or phospholipid content and composition was not related to the change in secretion behavior. (ii) There was no specific fatty acid or phospholipid compound which regulated glutamate efflux. (iii) High efflux activity could only be induced when the total lipid content of the membrane was reduced. (iv) Although consistently correlated to high secretion activity, membrane alteration was never a sufficient prerequisite for glutamate efflux in C. glutamicum.  相似文献   

3.
4.
In order to gain a first insight into the alternative oxidase (AO) function in durum wheat mitochondria (DWM), we investigated some activation pathways of this enzyme in DWM purified from both etiolated shoots and green leaves. AO was activated when DWM were added with either pyruvate, known as an AO activator in other plant mitochondria, or alanine plus 2-oxoglutarate, which can generate intramitochondrial pyruvate and glutamate via transamination. In contrast, no AO activity was observed during oxidation of malate plus glutamate or succinate (which can generate malate). In this regard DWM differ from other plant mitochondria. Moreover, DWM were found: (i) to have a very low malic enzyme (ME) activity, (ii) to release oxaloacetate rather than pyruvate during malate oxidation and (iii) to poorly oxidise malate in the absence of glutamate, which removes oxaloacetate via transamination. Therefore, we show that, unlike other plant mitochondria, no pyruvate is generated inside DWM from malate via ME, allowing no AO activity. Other AO activators, alternative to pyruvate, were checked by evaluating the capability of several compounds to induce oxygen uptake and/or electrical membrane potential (Delta Psi) in cyanide-treated DWM. Hydroxypyruvate and glyoxylate, photorespiratory cycle intermediates, were found to be powerful AO activators, capable of inducing a maximal rate of cyanide-insensitive oxygen uptake 1.7 times and 2.3 times higher than pyruvate, respectively. These results suggest that in durum wheat a link may exist between AO activity and photorespiratory metabolism rather than malate metabolism. Moreover, we observed that AO activation resulted in both a partially coupled respiration and a reduction by half of the rate of superoxide anion generation; therefore, AO is expected to work as an antioxidative defence system when the photorespiratory cycle is highly active, as under environmental stress.  相似文献   

5.
Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa   总被引:3,自引:0,他引:3  
The mitochondria of rat intestinal mucosa were found to have an enzymatic activity that converts radioactive glutamate to pyrroline-5-carboxylate (P5C) in the presence of ATP, NADPH, and MgCl2. The product of this enzyme was identified as P5C by the fact that it was converted to proline by chemical reduction with NaBH4 or by enzymatic reduction with NADH in the presence of purified yeast P5C reductase. The product was demonstrated to be P5C rather than pyrroline-2-carboxylate by thin layer chromatography. The presence of the activity in mitochondria prepared from intestinal mucosa of germ-free rats proved that this activity is of mammalian origin. Omission of either ATP, NADPH, or MgCl2 from the reaction mixture resulted in little or no activity. The optimal pH appeared to be about 7.0 under the conditions used. Substrate saturation curves in the presence of an ATP and an NADPH regeneration system gave apparent Km values of 2.5 mM for glutamate, 0.19 mM for ATP, and 6.5 microM for NADPH in the presence of 20 mM MgCl2. The mitochondrial preparation usually produced P5C at a rate of 1.2 to 1.6 nmol/mg/min at 20 degrees C when incubated with 1 mM glutamate, 3 mM ATP, 0.2 mM NADPH, and 20 mM MgCl2.  相似文献   

6.
Glucose increases insulin secretion by raising cytoplasmic Ca(2+) ([Ca(2+)](i)) in beta-cells (triggering pathway) and augmenting the efficacy of Ca(2+) on exocytosis (amplifying pathway). It has been suggested that glutamate formed from alpha-ketoglutarate is a messenger of the amplifying pathway (Maechler, P., and Wollheim, C. B. (1999) Nature 402, 685-689). This hypothesis was tested with mouse islets depolarized with 30 mm KCl (+ diazoxide) or with a saturating concentration of sulfonylurea. Because [Ca(2+)](i) was elevated under these conditions, insulin secretion was stimulated already in 0 mm glucose. The amplification of secretion produced by glucose was accompanied by an increase in islet glutamate. However, glutamine (0.5-2 mm) markedly augmented islet glutamate without affecting insulin secretion, whereas glucose augmented secretion without influencing glutamate levels when these were elevated by glutamine. Allosteric activation of glutamate dehydrogenase by BCH (2-amino 2-norbornane carboxylic acid) lowered islet glutamate but increased insulin secretion. Similar insulin secretion thus occurred at very different cellular glutamate levels. Glutamine did not affect islet [Ca(2+)](i) and pH(i), whereas glucose and BCH slightly raised pH(i) and either slightly decreased (30 mm KCl) or increased (tolbutamide) [Ca(2+)](i). The general dissociation between changes in islet glutamate and insulin secretion refutes a role of beta-cell glutamate in the amplification of insulin secretion by glucose.  相似文献   

7.
Oxidative decarboxylation of [1-14C]pyruvate was studied in primary cultures of neurons and of astrocytes. The rate of this process, which is a measure of carbon flow into the tricarboxylic acid (TCA) cycle and which is inhibited by its end product, acetyl CoA, was determined under conditions which would either elevate or reduce the components of the malate-aspartate shuttle (MAS). Addition of aspartate (1 mM) was found to stimulate pyruvate decarboxylation in astrocytes whereas addition of glutamate (or glutamine) had no effect. Since aspartate is a precursor for extramitochondrial malate, and thus intramitochondrial oxaloacetate, whereas glutamate and glutamine are not, this suggests that an increase in oxaloacetate level stimulates TCA cycle activity. Conversely, a reduction of the glutamate content by 3 mM ammonia, which might reduce exchange between glutamate and aspartate across the mitochondrial membrane, suppressed pyruvate decarboxylation. This effect was abolished by addition of glutamate or glutamine or exposure to methionine sulfoximine (MSO). These findings suggest that impairment of MAS activity by removal of MAS constituents decreases TCA cycle activity whereas replenishment of these compounds restores the activity of the TCA cycle. No corresponding effects were observed in neurons.  相似文献   

8.
Nitrogen regulation of glutamine synthetase in Neurospora crassa.   总被引:7,自引:0,他引:7  
A higher activity of glutamine synthetase (EC 6.3.1.2) was found in Neurospora crassa when NH4+ was limiting as nitrogen source than when glutamate was limiting. When glutamate, glutamine or NH4+ were in excess, a lower activity was found. Immunological titration and sucrose gradient sedimentation of the enzyme established that under all these conditions enzyme activity corresponded to enzyme concentration and that the octamer was the predominant oligomeric form. When N. crassa was shifted from nitrogen-limiting substrates to excess product as nitrogen source, the concentration of glutamine synthetase was adjusted with kinetics that closely followed dilution by growth. When grown on limiting amounts of glutamate, a lower oligomer was present in addition to the octameric form of the enzyme. When the culture was shifted to excess NH4+, glutamine accululated at a high rate; nevertheless, there was only a slow decrease in enzyme activity and no modification of the oligomeric pattern.  相似文献   

9.
Neuronal activity greatly influences the formation and stabilization of synapses. Although receptors for sphingosine-1-phosphate (S1P), a lipid mediator regulating diverse cellular processes, are abundant in the central nervous system, neuron-specific functions of S1P remain largely undefined. Here, we report two novel actions of S1P using primary hippocampal neurons as a model system: (i) as a secretagogue where S1P triggers glutamate secretion and (ii) as an enhancer where S1P potentiates depolarization-evoked glutamate secretion. Sphingosine kinase 1 (SK1), a key enzyme for S1P production, was enriched in functional puncta of hippocampal neurons. Silencing SK1 expression by small interfering RNA as well as SK1 inhibition by dimethylsphingosine resulted in a strong inhibition of depolarization-evoked glutamate secretion. Fluorescence recovery after photobleaching analysis showed translocation of SK1 from cytosol to membranes at the puncta during depolarization, which resulted in subsequent accumulation of S1P within cells. Fluorescent resonance energy transfer analysis demonstrated that the S1P(1) receptor at the puncta was activated during depolarization and that depolarization-induced S1P(1) receptor activation was inhibited in SK1-knock-down cells. Importantly, exogenously added S1P at a nanomolar concentration by itself elicited glutamate secretion from hippocampal cells even when the Na(+)-channel was blocked by tetrodotoxin, suggesting that S1P acts on presynaptic membranes. Furthermore, exogenous S1P at a picomolar level potentiated depolarization-evoked secretion in the neurons. These findings indicate that S1P, through its autocrine action, facilitates glutamate secretion in hippocampal neurons both by secretagogue and enhancer actions and may be involved in mechanisms underlying regulation of synaptic transmission.  相似文献   

10.
Glutamate dehydrogenase (GDH) catalyzes reversible oxidative deamination of l-glutamate to alpha-ketoglutarate. Enzyme activity is regulated by several allosteric effectors. Recognition of a new form of hyperinsulinemic hypoglycemia, hyperinsulinism/hyperammonemia (HI/HA) syndrome, which is caused by gain-of-function mutations in GDH, highlighted the importance of GDH in glucose homeostasis. GDH266C is a constitutively activated mutant enzyme we identified in a patient with HI/HA syndrome. By overexpressing GDH266C in MIN6 mouse insulinoma cells, we previously demonstrated unregulated elevation of GDH activity to render the cells responsive to glutamine in insulin secretion. Interestingly, at low glucose concentrations, basal insulin secretion was exaggerated in such cells. Herein, to clarify the role of GDH in the regulation of insulin secretion, we studied cellular glutamate metabolism using MIN6 cells overexpressing GDH266C (MIN6-GDH266C). Glutamine-stimulated insulin secretion was associated with increased glutamine oxidation and decreased intracellular glutamate content. Similarly, at 5 mmol/l glucose without glutamine, glutamine oxidation also increased, and glutamate content decreased with exaggerated insulin secretion. Glucose oxidation was not altered. Insulin secretion profiles from GDH266C-overexpressing isolated rat pancreatic islets were similar to those from MIN6-GDH266C, suggesting observation in MIN6 cells to be relevant in native beta-cells. These results demonstrate that, upon activation, GDH oxidizes glutamate to alpha-ketoglutarate, thereby stimulating insulin secretion by providing the TCA cycle with a substrate. No evidence was obtained supporting the hypothesis that activated GDH produced glutamate, a recently proposed second messenger of insulin secretion, by the reverse reaction, to stimulate insulin secretion.  相似文献   

11.
The activity of high-affinity glutamate transporters is essential for the normal function of the mammalian central nervous system. Using a combined pharmacological, confocal immunocytochemical, enzyme-based microsensor and fluorescence imaging approach, we examined glutamate uptake and transporter protein localization in single astrocytes of neuron-containing and neuron-free microislands prior to pre-synaptic transmitter secretion and during functional neuronal activity. Here, we report that the presence or absence of neurons strikingly affects the uptake capacity of the astroglial glutamate transporters GLT1 and GLAST1. Induction of transporter function is activated by neurons and this effect is mimicked by pre-incubation of astrocytes with micromolar concentrations of glutamate. Moreover, increased glutamate transporter activation is reproduced by endogenous release of glutamate via activation of neuronal nicotinic receptors. The increase in transport activity is dependent on neuronal release of glutamate, is associated with the local redistribution (clustering) of GLT1 and GLAST1 but is independent of transporter synthesis and of glutamate receptor activation. Together, these results suggest an activity-dependent neuronal feedback system for rapid astroglial glutamate transporter regulation where neuron-derived glutamate is the physiological signal that triggers transporter function.  相似文献   

12.
Succinivibrio dextrinosolvens C18 was found to possess glutamine synthetase (GS), urease, glutamate dehydrogenase, and several other nitrogen assimilation enzymes. When grown in continuous culture under ammonia limitation, both GS and urease activities were high and glutamate dehydrogenase activity was low, but the opposite activity pattern was observed for growth in the presence of ample ammonia. The addition of high-level (15 mM) ammonium chloride to ammonia-limited cultures resulted in a rapid loss of GS activity as measured by either the gamma-glutamyl transferase or forward assay method with cells or extracts. No similar activity losses occurred for urease, glutamate dehydrogenase, or pyruvate kinase. The GS activity loss was not prevented by the addition of chloramphenicol and rifampin. The GS activity could be recovered by washing or incubating cells in buffer or by the addition of snake venom phosphodiesterase to cell extracts. Manganese inhibited the GS activity (forward assay) of untreated cells but stimulated the GS activity in ammonia-treated cells. Alanine, glycine, and possibly serine were inhibitory to GS activity. Optimal pH values for GS activity were 7.3 and 7.4 for the forward and gamma-glutamyl transferase assays, respectively. The glutamate dehydrogenase activity was NADPH linked and optimal in the presence of KCl. The data are consistent with an adenylylation-deadenylylation control mechanism for GS activity in S. dextrinosolvens, and the GS pathway is a major route for ammonia assimilation under low environmental ammonia levels. The rapid regulation of the ATP-requiring GS activity may be of ecological importance to this strictly anaerobic ruminal bacterium.  相似文献   

13.
Succinivibrio dextrinosolvens C18 was found to possess glutamine synthetase (GS), urease, glutamate dehydrogenase, and several other nitrogen assimilation enzymes. When grown in continuous culture under ammonia limitation, both GS and urease activities were high and glutamate dehydrogenase activity was low, but the opposite activity pattern was observed for growth in the presence of ample ammonia. The addition of high-level (15 mM) ammonium chloride to ammonia-limited cultures resulted in a rapid loss of GS activity as measured by either the gamma-glutamyl transferase or forward assay method with cells or extracts. No similar activity losses occurred for urease, glutamate dehydrogenase, or pyruvate kinase. The GS activity loss was not prevented by the addition of chloramphenicol and rifampin. The GS activity could be recovered by washing or incubating cells in buffer or by the addition of snake venom phosphodiesterase to cell extracts. Manganese inhibited the GS activity (forward assay) of untreated cells but stimulated the GS activity in ammonia-treated cells. Alanine, glycine, and possibly serine were inhibitory to GS activity. Optimal pH values for GS activity were 7.3 and 7.4 for the forward and gamma-glutamyl transferase assays, respectively. The glutamate dehydrogenase activity was NADPH linked and optimal in the presence of KCl. The data are consistent with an adenylylation-deadenylylation control mechanism for GS activity in S. dextrinosolvens, and the GS pathway is a major route for ammonia assimilation under low environmental ammonia levels. The rapid regulation of the ATP-requiring GS activity may be of ecological importance to this strictly anaerobic ruminal bacterium.  相似文献   

14.
In order to determine whether the cysteine requirement of human T lineage cells is met primarily by extracellular cysteine or by cystine, amino-acid-transport activities were measured in resting and mitogenically stimulated human peripheral blood lymphocytes (PBL) and several human T cell clones and T cell tumors. The transport activity of the small neutral amino acids cysteine and alanine (ASC system) and the transport of the cationic amino acid arginine (y+ system) were found to be markedly increased after stimulation of PBL by the T cell mitogen phytohemagglutinin from Phaseolus vulgaris. The anionic transport activity for cystine and glutamate (Xc- system), in contrast, was extremely weak in both resting and activated human PBL and also in all human T cell lines under test. The weak system Xc- activity of human T lineage cells was further confirmed by an independent line of experiments showing that an increase of the extracellular concentration of glutamate, i.e. a competitive inhibitor of cystine transport, causes a decrease in the intracellular cystine levels in cells of the promonocytic line U937, but not in T lineage cells (Molt-4). A third set of experiments showed that the rate of DNA synthesis in mitogenically stimulated human PBL is strongly influenced by variations of the extracellular cysteine level, even in cultures with relatively high and approximately physiological concentrations of cystine. Cysteine cannot be replaced in this case by the addition of corresponding amounts of cystine or methionine. This demonstrates an important functional consequence of the weak cystine transport activity of human lymphocytes. The results may be relevant for the pathogenetic mechanism of the acquired immunodeficiency syndrome, since the mean plasma cysteine concentration of human-immunodeficiency-virus-1-seropositive persons was found to be strongly decreased in comparison with that of healthy blood donors, and since the cysteine level even of healthy persons is extremely low in comparison with all other protein-forming amino acids.  相似文献   

15.
Intrabiliary glutathione hydrolysis. A source of glutamate in bile   总被引:5,自引:0,他引:5  
High concentrations of glutathione (GSH) and two of its constituent amino acids, glutamate and glycine, are normally found in rat bile. To examine the role of intrabiliary GSH hydrolysis as a source of these amino acids, as well as of cystine in bile, the biliary excretion of GSH and free amino acids was measured in normal male Sprague-Dawley rats; in animals given either phenol 3,6-dibromphthalein disulfonate or diethyl maleate, inhibitors of GSH secretion into bile; and after a retrograde intrabiliary infusion of (alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125), an irreversible inhibitor of gamma-glutamyl transferase activity. Total concentration of amino acids in normal rat bile ranged from 4 to 7 mM and was more than double the concentration in plasma (2-3 mM). Although most amino acids were detected in bile, glutamate and glycine were the most prevalent (1.2 and 1.0 mM, respectively), followed by the branched chain amino acids valine and leucine. The administration of phenol 3,6-dibromphthalein disulfonate (180 mumol/kg, intravenous), or of diethyl maleate (1 mmol/kg, intraperitoneal), resulted in a marked decrease in the biliary excretion of GSH, as well as a decrease in the excretion of glutamate, cystine, and glycine; however, the effects of these agents were not specific for the amino acid constituents of GSH. Following retrograde intrabiliary infusion of AT-125 (10 mumol/kg), there was an immediate and sustained doubling in the rate of biliary excretion of both GSH and glutathione disulfide and a marked decrease in the rate of excretion of glutamate. Varying the dose of AT-125 (0-20 mumol/kg) resulted in an inverse linear relation between hepatic gamma-glutamyl transferase activity and the biliary excretion of intact GSH. These findings suggest that most, if not all, of the free glutamate in excreted bile is formed from the intrabiliary hydrolysis of GSH. Prior to hydrolysis within the biliary tree, substantial concentrations of GSH must be transported from liver cells into bile; minimal canalicular concentrations of this tripeptide are estimated at 5 mM.  相似文献   

16.
Direct stimulation of pituitary prolactin release by glutamate   总被引:4,自引:0,他引:4  
I S Login 《Life sciences》1990,47(24):2269-2275
The ability of glutamate and other excitatory amino acids to stimulate prolactin secretion when administered to adult animals is hypothesized to depend on a central site of action in the brain, but there are no data to support this position. An alternative hypothesis was tested that glutamate would stimulate prolactin release when applied directly to primary cultures of dispersed adult female rat anterior pituitary cells studied in a perifusion protocol. Glutamate increased the rate of prolactin release within two minutes in a self-limited manner. Glutamate-stimulated prolactin release was augmented about 4-fold by elimination of magnesium from the perfusate and was associated with stimulation of pituitary calcium flux. Ketamine and MK-801 both reduced the basal rate of prolactin release and abolished the effects of glutamate. Pituitary cells of 10-day-old rats responded similarly to glutamate. Exposure to glutamate did not influence subsequent responses to physiological hypothalamic secretagogues, thus the likelihood of toxicity was minimized. These results suggest that the N-methyl-D-aspartate (NMDA) subclass of the glutamate receptor complex is involved. Prolactin secretion may be regulated physiologically through a functional glutamate receptor on pituitary cells.  相似文献   

17.
To investigate the roles of ammonium-assimilating enzymes in proline synthesis under salinity stress, the activities of glutamine synthetase (GS; EC 6.3.1.2) and NADH-dependent glutamate dehydrogenase (NADH-GDH; EC 1.4.1.2) were determined in leaves of wheat (Triticum aestivum) seedlings exposed to salt stress at 150 and 300 mM NaCl for 5d. At the lower salinity, only GS activity increased markedly. At 300 mM NaCl, however, NADH-GDH activity increased while GS activity decreased. A significant accumulation of proline was found only at high-salinity exposure while glutamate, a proline precursor, increased dramatically under both low and high salinity. These data suggests that GS-catalysis might be the main glutamate synthesis pathway under low salinity. At 300 mM NaCl, glutamate seems to be preferentially produced through the process catalyzed by NADH-GDH. The increase of ammonium in salinity-stressed wheat seedlings might have resulted from increased photorespiration, which is responsible for the higher NADH-GDH activity. The activity of Delta(1)-pyrroline-5-carboxylate reductase (P5CR; EC 1.5.1.2) was significantly enhanced at 300 mM NaCl but remained unchanged at 150 mM. Delta(1)-Pyrroline-5-carboxylate synthetase (P5CS) activity did not show a specific response, indicating that P5CR might be the limiting step in proline synthesis from glutamate at high salinity.  相似文献   

18.
The distribution of alkaline phosphatase and nuclease activity between cells and medium was examined in one strain of Bacillus licheniformis and four strains of B. subtilis. Over 95% of both activities was found in the medium of the B. licheniformis culture, but in the B. subtilis cultures the amount of enzyme activity found in the medium varied with the strain and the enzyme considered. B. licheniformis 749 and its penicillinase magnoconstitutive mutant 749/C were grown in continuous culture with phosphorous as the growth-limiting factor, and the kinetics of penicillinase formation and secretion were examined. Nutrient arrest halted secretion (usually after a lag of about 30 min) in both the inducible and constitutive strains. Chloramphenicol did not eliminate secretion, but under certain circumstances reduced its rate. In the inducible strain treated with a low level of inducer, the rate of secretion was more affected by the rate of synthesis than by the level of cell-bound enzyme. During induction, the onset of accretion of cell-bound penicillinase and secretion of the exoenzyme were nearly simultaneous. It seems unlikely that a long-lived, membrane- or cell-bound intermediate is mandatory in the secretion of the three enzymes by Bacillus species. In the case of penicillinase secretion, there are at least two different phases. When penicillinase synthesis is proceeding rapidly, the rate of secretion is five to six times greater at equivalent concentrations of membrane-bound penicillinase than it is when penicillinase synthesis is reduced. The data require that any membrane-bound intermediate in the formation of exoenzyme be much shorter-lived in cells with a high rate of synthesis than in cells with a low rate. Either there are two separate routes for the secretion of penicillinase or the characteristics of the process vary substantially between the early stages and the declining phase of induction.  相似文献   

19.
High affinity transport of glutamic acid has been studied in cortical and hypothalamic synaptosomes from castrated male rats and compared to normal controls. For hypothalamic synaptosomes, both initial velocity of uptake and Va (apparent maximal velocity) were found to be about one-third lower in the castrated animals. Kt (glutamate concentration giving Va/2), however, was reduced by only 5%.Initial velocity of uptake in cortical synaptosomes was measured as a function of both sodium and glutamate concentration. Reductions in uptake subsequent to castration were found to be much less for cortical synaptosomes (2–15%) than for hypothalamic synaptosomes. Fit for these data to various models for the sodium dependence of transport resulted in the same minimal best fit model as that found for control animals. Thus castration does not alter the fundamental nature of the mechanism by which carrier, sodium, and glutamate interact in the process of transport. However quantitative changes were found to occur, as reflected in the best fit constants. These constants were used along with the rate equation for the minimal best fit model to calculate certain parameters which were then used to delineate the quantitative changes in the transporter following castration. A neuroregulatory role for glutamate in gonadotropin secretion has been recently proposed; the present study now provides additional information on the relationship between reproductive function and one aspect of glutamatergic synaptic function, namely, the high affinity transport system.  相似文献   

20.
The acidic amino acids aspartate and glutamate are excitatory neurotransmitters in the CNS. The clearance of this group of amino acids from CSF of adult and neonatal (7-day-old) rats was investigated. Ventriculo-cisternal perfusions with 14C-amino acids and 3H-dextran were carried out for up to 90 min. Uptake of the amino acids by the whole brain was measured, and the loss to blood was calculated. 3H-Dextran was included in the perfusate for measurement of CSF secretion rate. After 90-min perfusion, both aspartate and glutamate showed a similar uptake into the whole brain, and this did not change with age (p>0.05). However, clearance from CSF was greater in the adult, as was entry into blood from CSF. Addition of 5 mM excess unlabelled amino acid resulted in reduction in the brain uptake of both 14C-amino acids in the adult rat. In the neonate, addition of aspartate also reduced brain aspartate uptake, whereas addition of glutamate increased brain neonatal [14C]glutamate uptake. The rate of CSF secretion was significantly greater in the adult, 1.26+/-0.18 microl x min(-1) x g(-1), than in the neonate, 0.62+/-0.08 microl x min(-1) x g(-1), and the turnover of CSF was greater in adults (p<0.01). In summary, both aspartate and glutamate showed greater clearances from CSF in the adult than the neonate. This clearance was found to be by carrier-mediated mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号