首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following the success of small-molecule high-throughput screening (HTS) in drug discovery, other large-scale screening techniques are currently revolutionizing the biological sciences. Powerful new statistical tools have been developed to analyze the vast amounts of data in DNA chip studies, but have not yet found their way into compound screening. In HTS, characterization of single-point hit lists is often done only in retrospect after the results of confirmation experiments are available. However, for prioritization, for optimal use of resources, for quality control, and for comparison of screens it would be extremely valuable to predict the rates of false positives and false negatives directly from the primary screening results. Making full use of the available information about compounds and controls contained in HTS results and replicated pilot runs, the Z score and from it the p value can be estimated for each measurement. Based on this consideration, we have applied the concept of p-value distribution analysis (PVDA), which was originally developed for gene expression studies, to HTS data. PVDA allowed prediction of all relevant error rates as well as the rate of true inactives, and excellent agreement with confirmation experiments was found.  相似文献   

2.
Glycosyltransferases mediate changes in glycosylation patterns which, in turn, may affect the function of glycoproteins and/or glycolipids and, further downstream, processes of development, differentiation, transformation and cell-cell recognition. Such enzymes, therefore, represent valid targets for drug discovery. We have developed a solid-phase glycosyltransferase assay for use in a robotic high-throughput format. Carbohydrate acceptors coupled covalently to polyacrylamide are coated onto 96-well plastic plates. The glycosyltransferase reaction is performed with recombinant enzymes and radiolabeled sugar-nucleotide donor at 37°C, followed by washing, addition of scintillation counting fluid, and measurement of radioactivity using a 96-well -counter. Glycopolymer construction and coating of the plastic plates, enzyme and substrate concentrations, and linearity with time were optimized using recombinant Core 2 1-6-N-acetylglucosaminyltransferase (Core 2 GlcNAc-T). This enzyme catalyzes a rate-limiting reaction for expression of polylactosamine and the selectin ligand sialyl-Lewisx in -glycans. A glycopolymer acceptor for 1-6-N-acetylglucosaminyltransferase V was also designed and shown to be effective in the solid-phase assay. In a high-throughput screen of a microbial extract library, the coefficient of variance for positive controls was 9.4%, and high concordance for hit validation was observed between the Core 2 GlcNAc-T solid-phase assay and a standard solution-phase assay. The solid-phase assay format, which can be adapted for a variety of glycosyltransferase enzymes, allowed a 5–6 fold increase in throughput compared to the corresponding solution-phase assay.  相似文献   

3.
Functional cellular assays are the bedrock of modern drug discovery. These utilise cellular systems that yield a measurable biochemical product or physiological response to drug stimulation. Often, these functional responses are studied by the introduction of the molecular target of choice into an inert cellular background to create a more discriminating system. There are as many techniques for delivery of the required target gene as there are techniques for studying their function. This article will consider the genetic modification of cell lines in vitro to develop cell-based assays for drug discovery and high-throughput screening.  相似文献   

4.
Cytotoxicity tests for high-throughput drug discovery   总被引:7,自引:0,他引:7  
Despite theoretical obstacles associated with performing cell-based assays in high-density formats (microplates with at least 384 wells), it is becoming clear that the pharmaceutical industry is now routinely running cell-based tests in these formats. This work is revealing the weakness of established cytotoxicity end points, specifically in relation to sensitivity and reproducibility. New assay kits based on bioluminescent detection of ATP and ADP are now providing the answer to these problems.  相似文献   

5.
6.
陈晴  李国伟  杜毅  陈静  蒋华良  沈旭 《生命科学》2004,16(5):301-304
随着后基因组时代的到来,越来越多的药物靶标蛋白将会被发现,基于靶标蛋白设计出的化合物也将大量涌现,高通量药物筛选日趋重要。酵母基因组的易操作性及其简单稳定的培养条件,使得该真核微生物成为一种理想的药物筛选工程细胞。本文讨论了选择酵母系统进行细胞水平筛选的优缺点,并从基于靶点和表型两种筛选模式对酵母水平的高通量药物筛选做一总结。  相似文献   

7.
In recent years, interest in organocatalysis, the catalysis with small organic molecules, has been revitalized. Independently, high-throughput-screening and combinatorial chemistry became practical methodologies in the discovery of novel catalytic entities. The logical extension of these methodologies to organocatalysis has led to several interesting results, which are highlighted in this review.  相似文献   

8.
Applications of high-throughput ADME in drug discovery   总被引:1,自引:0,他引:1  
Assessment of physicochemical and pharmacological properties is now conducted at very early stages of drug discovery for the purpose of accelerating the conversion of hits and leads into qualified development candidates. In particular, in vitro absorption, distribution, metabolism and elimination (ADME) assays and in vivo drug metabolism pharmacokinetic (DMPK) studies are being conducted throughout the discovery process, from hit generation through to lead optimization, with the goal of reducing the attrition rate of these potential drug candidates as they progress through development. Because the continuing trend in drug discovery has been to access ADME information earlier and earlier in the discovery process, the need has arisen within the analytical community to introduce faster and better analytical methods to enhance the 'developability' of drug leads. Strategies for streamlined ADME assessment of drug candidates in discovery and pre-clinical development are presented within.  相似文献   

9.
Adaptive Profiling (APL) and other biochip companies aim to harness the power of microsystems technology together with advances in chemistry and molecular biology, to become service and technology providers to organizations involved in pharmaceutical research and development. By supplying a unique range of decision-making tools that aid an earlier identification of qualified drug candidates for clinical development, the company should gain a significant share of the 10 billion US dollar biological screening, bioavailability and toxicity assessment market.  相似文献   

10.
Implementing functional cell-based screens in early antibody discovery has become increasingly important to select antibodies with the desired profile. However, this is limited by assay tolerance to crude antibody preparations and assay sensitivity. The current study aims to address this challenge and identify routes forward. Two common types of high-throughput screening (HTS) antibody sample, derived from either phage display or hybridoma techniques, have been screened across a wide range of CellSensor beta-lactamase reporter assays in a variety of cell backgrounds to more extensively characterize assay tolerance. Pathway-, sample-, and cell background-specific effects were observed. Reporter assays for agonism were less affected by crude antibody preparations, with 8 of 21 sample tolerant, and the potential to implement an additional 8 assays by choosing the best-tolerated sample type. Antagonist mode assays exhibited more complexity, with potentiating as well as inhibitory effects. However, 5 of 24 antagonist assays were fully tolerant, with the potential to implement an additional 11 assays. Different subsets of assays were affected in agonist versus antagonist mode, and hybridoma sample sets were better tolerated overall. The study clearly demonstrates the potential to use cell-based reporter assays in biologics HTS, particularly if the method of antibody production is considered in the context of the required assay mode (agonist/antagonist).  相似文献   

11.
Treatment of tuberculosis, like other infectious diseases, is increasingly hindered by the emergence of drug resistance. Drug discovery efforts would be facilitated by facile screening tools that incorporate the complexities of human disease. Mycobacterium marinum-infected zebrafish larvae recapitulate key aspects of tuberculosis pathogenesis and drug treatment. Here, we develop a model for rapid in vivo drug screening using fluorescence-based methods for serial quantitative assessment of drug efficacy and toxicity. We provide proof-of-concept that both traditional bacterial-targeting antitubercular drugs and newly identified host-targeting drugs would be discovered through the use of this model. We demonstrate the model's utility for the identification of synergistic combinations of antibacterial drugs and demonstrate synergy between bacterial- and host-targeting compounds. Thus, the platform can be used to identify new antibacterial agents and entirely new classes of drugs that thwart infection by targeting host pathways. The methods developed here should be widely applicable to small-molecule screens for other infectious and noninfectious diseases.  相似文献   

12.
虚拟筛选与新药发现   总被引:18,自引:0,他引:18  
虚拟筛选是创新药物研究的新方法和新技术,近年来引起了研究机构和制药公司的高度重视,并且已经成为一种与高通量筛选互补的实用化工具,加入到了创新药物研究的工作流程(pipeline)中。本文介绍国际上虚拟筛选及其在创新药物发现中应用的研究进展,特别介绍了我国这方面研究的状况。  相似文献   

13.
14.
NMR screening in drug discovery   总被引:2,自引:0,他引:2  
NMR methods in drug discovery have traditionally been used to obtain structural information for drug targets or target-ligand complexes. Recently, it has been shown that NMR may be used as an alternative approach for identification of ligands that bind to protein drug targets, shifting the emphasis of many NMR laboratories towards screening and design of potential drug molecules, rather than structural characterization.  相似文献   

15.
Previous studies have shown DNA re-replication can be induced in cells derived from human cancers under conditions in which it is not possible for cells derived from normal tissues. Because DNA re-replication induces cell death, this strategy could be applied to the discovery of potential anticancer therapeutics. Therefore, an imaging assay amenable to high-throughput screening was developed that measures DNA replication in excess of four genomic equivalents in the nuclei of intact cells and indexes cell proliferation. This assay was validated by screening a library of 1,280 bioactive molecules on both normal and tumor-derived cells where it proved more sensitive than current methods for detecting excess DNA replication. This screen identified known inducers of excess DNA replication, such as inhibitors of microtubule dynamics, and novel compounds that induced excess DNA replication in both normal and cancer cells. In addition, two compounds were identified that induced excess DNA replication selectively in cancer cells and one that induced endocycles selectively in cancer cells. Thus, this assay provides a new approach to the discovery of compounds useful for investigating the regulation of genome duplication and for the treatment of cancer.  相似文献   

16.
Lead discovery in the pharmaceutical environment is largely an industrial-scale process in which it is typical to screen 1-5 million compounds in a matter of weeks using High Throughput Screening (HTS). This process is a very costly endeavor. Typically a HTS campaign of 1 million compounds will cost anywhere from $500000 to $1000000. There is consequently a great deal of pressure to maximize the return on investment by finding fast and more effective ways to screen. A panacea that has emerged over the past few years to help address this issue is in silico screening. In silico screening is now incorporated in all areas of lead discovery; from target identification and library design, to hit analysis and compound profiling. However, as lead discovery has evolved over the past few years, so has the role of in silico screening.  相似文献   

17.
Staphylococcus aureus is a leading cause of hospital- and community-acquired infections. Despite current advances in antimicrobial chemotherapy, the infections caused by S. aureus remain challenging due to their ability to readily develop resistance. Indeed, antibiotic resistance, exemplified by methicillin-resistant S. aureus (MRSA) is a top threat to global health security. Furthermore, the current rate of antibiotic discovery is much slower than the rate of antibiotic-resistance development. It seems evident that the conventional in vitro bacterial growth-based screening strategies can no longer effectively supply new antibiotics at the rate needed to combat bacterial antibiotic-resistance. To overcome this antibiotic resistance crisis, screening assays based on host–pathogen interactions have been developed. In particular, the free-living nematode Caenorhabditis elegans has been used for drug screening against MRSA. In this review, we will discuss the general principles of the C. elegans-based screening platform and will highlight its unique strengths by comparing it with conventional antibiotic screening platforms. We will outline major hits from high-throughput screens of more than 100,000 small molecules using the C. elegans–MRSA infection assay and will review the mode-of-action of the identified hit compounds. Lastly, we will discuss the potential of a C. elegans-based screening strategy as a paradigm shift screening platform.  相似文献   

18.
Poor solubility is a common challenge encountered during the development of high concentration monoclonal antibody (mAb) formulations, but there are currently no methods that can provide predictive information on high-concentration behavior of mAbs in early discovery. We explored the utility of methodologies used for determining extrapolated solubility as a way to rank-order mAbs based on their relative solubility properties. We devised two approaches to accomplish this: 1) vapor diffusion technique utilized in traditional protein crystallization practice, and 2) polyethylene glycol (PEG)-induced precipitation and quantitation by turbidity. Using a variety of in-house mAbs with known high-concentration behavior, we demonstrated that both approaches exhibited reliable predictability of the relative solubility properties of these mAbs. Optimizing the latter approach, we developed a format that is capable of screening a large panel of mAbs in multiple pH and buffer conditions. This simple, material-saving, high-throughput approach enables the selection of superior molecules and optimal formulation conditions much earlier in the antibody discovery process, prior to time-consuming and material intensive high-concentration studies.  相似文献   

19.
20.
A major pathway for bacterial preprotein translocation is provided by the Sec-dependent preprotein translocation pathway. Proteins destined for Sec-dependent translocation are synthesized as preproteins with an N-terminal signal peptide, which targets them to the SecYEG translocase channel. The driving force for the translocation reaction is provided by the peripheral membrane ATPase SecA, which couples the hydrolysis of ATP to the stepwise transport of unfolded preproteins across the bacterial membrane. Since SecA is essential, highly conserved among bacterial species, and has no close human homologues, it represents a promising target for antibacterial chemotherapy. However, high-throughput screening (HTS) campaigns to identify SecA inhibitors are hampered by the low intrinsic ATPase activity of SecA and the requirement of hydrophobic membranes for measuring the membrane or translocation ATPase activity of SecA. To address this issue, we have developed a colorimetric high-throughput screening assay in a 384-well format, employing an Escherichia coli (E. coli) SecA mutant with elevated intrinsic ATPase activity. The assay was applied for screening of a chemical library consisting of ∼27,000 compounds and proved to be highly reliable (average Z′ factor of 0.89). In conclusion, a robust HTS assay has been established that will facilitate the search for novel SecA inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号