首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of carboxylic residues at the high-affinity, Mn-binding site in the ligation of iron cations blocking the site [Biochemistry 41 (2000) 5854] was studied, using a method developed to extract the iron cations blocking the site. We found that specifically bound Fe(III) cations can be extracted with citrate buffer at pH 3.0. Furthermore, citrate can also prevent the photooxidation of Fe(II) cations by YZ. Participation of a COOH group(s) in the ligation of Fe(III) at the high-affinity site was investigated using 1-ethyl-3-[(3-dimethylamino)propyl] carbodiimide (EDC), a chemical modifier of carboxylic amino acid residues. Modification of the COOH groups inhibits the light-induced oxidation of exogenous Mn(II) cations by Mn-depleted photosystem II (PSII[-Mn]) membranes. The rate of Mn(II) oxidation saturates at > or = 10 microM in PSII(-Mn) membranes and > or = 500 microM in EDC-treated PSII (-Mn) samples. Intact PSII(-Mn) membranes have only one site for Mn(II) oxidation via YZ (dissociation constant, Kd = 0.64 microM), while EDC-treated PSII(-Mn) samples have two sites (Kd = 1.52 and 22 microM; the latter is the low-affinity site). When PSII(-Mn) membranes were incubated with Fe(II) before modifier treatment (to block the high-affinity site) and the blocking iron cations were extracted with citrate (pH 3.0) after modification, the membranes contained only one site (Kd = 2.3 microM) for exogenous Mn(II) oxidation by Y(Z)() radical. In this case, the rate of electron donation via YZ saturated at a Mn(II) concentration > or = 15 microM. These results indicate that the carboxylic residue participating in Mn(II) coordination and the binding of oxidized manganese cations at the HAZ site is protected from the action of the modifier by the iron cations blocking the HAZ site. We concluded that the carboxylic residue (D1 Asp-170) participating in the coordination of the manganese cation at the HAZ site (Mn4 in the tetranuclear manganese cluster [Science 303 (2004) 1831]) is also involved in the ligation of the Fe cation(s) blocking the high-affinity Mn-binding site.  相似文献   

2.
Incubation of Mn-depleted PSII membranes [PSII(-Mn)] with Fe(II) is accompanied by the blocking of Y(Z)(*) at the high-affinity Mn-binding site to exogenous electron donors [Semin et al. (2002) Biochemistry 41, 5854-5864] and a shift of the pK(app) of the hydrogen bond partner for Y(Z) (base B) from 7.1 to 6.1 [Semin, B. K., and Seibert, M. (2004) Biochemistry 43, 6772-6782]. Here we calculate activation energies (E(a)) for Y(Z)(*) reduction in PSII(-Mn) and Fe-blocked PSII(-Mn) samples [PSII(-Mn, +Fe)] from temperature dependencies of the rate constants of the fast and slow components of the flash-probe fluorescence decay kinetics. At pH < pK(app) (e.g., 5.5), the decays are fit with one (fast) component in both types of samples, and E(a) is equal to 42.2 +/- 2.9 kJ/mol in PSII(-Mn) and 46.4 +/- 3.3 kJ/mol in PSII(-Mn, +Fe) membranes. At pH > pK(app), the decay kinetics exhibit an additional slow component in PSII(-Mn, +Fe) membranes (E(a) = 36.1 +/- 7.5 kJ/mol), which is much lower than the E(a) of the corresponding component observed for Y(Z)(*) reduction in PSII(-Mn) samples (48.1 +/- 1.7 kJ/mol). We suggest that the above difference results from the formation of a strong low barrier hydrogen bond (LBHB) between Y(Z) and base B in PSII(-Mn, +Fe) samples. To confirm this, Fe-blocking was performed in D(2)O to insert D(+), which has an energetic barrier distinct from H(+), into the LBHB. Measurement of the pH effects on the rates of Y(Z)(*) reduction in PSII(-Mn, +Fe) samples blocked in D(2)O shows a shift of the pK(app) from 6.1 to 7.6, and an increase in the E(a) of the slow component. This approach was also used to measure the stability of the Y(Z)(*) EPR signal at various temperatures in both kinds of membranes. In PSII(-Mn) membranes, the freeze-trapped Y(Z)(*) radical is stable below 190 K, but half of the Y(Z)(*) EPR signal disappears after a 1-min incubation when the sample is warmed to 253 K. In PSII(-Mn, +Fe) samples, the trapped Y(Z)(*) radical is unstable at a much lower temperature (77 K). However, the insertion of D(+) into the hydrogen bond between Y(Z) and base B during the blocking process increases the temperature stability of the Y(Z)(*) EPR signal at 77 K. Again, these results indicate that Fe-blocking involves Y(Z) in the formation of a LBHB, which in turn is consistent with the suggested existence of a LBHB between Y(Z) and base B in intact PSII membranes [Zhang, C., and Styring, S. (2003) Biochemistry 42, 8066-8076].  相似文献   

3.
Semin BK  Ghirardi ML  Seibert M 《Biochemistry》2002,41(18):5854-5864
The donation of electrons by Mn(II) and Fe(II) to Y(Z*) through the high-affinity (HA(Z)) site in Mn-depleted photosystem II (PSII) membranes has been studied by flash-probe fluorescence yield measurements. Mn(II) and Fe(II) donate electrons to Y(Z*) with about the same efficiency, saturating this reaction at the same concentration (ca. 5 microM). However, following a short incubation of the membranes with 5 microM Fe(II), but not with Mn(II) in room light, added Mn(II) or Fe(II) can no longer be photooxidized by Y(Z)(*). This blocking effect is caused by specifically bound, photooxidized Fe [> or =Fe(III)] and is accompanied by a delay in the fluorescence yield decay kinetics attributed to the slowing down of the charge recombination rate between Q(a-) and Y(Z*). Exogenously added Fe(III), on the other hand, does not donate electrons to Y(Z*), does not block the donation of electrons by added Mn(II) and Fe(II), and does not change the kinetics of the decay of the fluorescence yield. These results demonstrate that the light-dependent oxidation of Fe(II) by Y(Z*) creates an Fe species that binds at the HA(Z) site and causes the blocking effect. The pH dependence of Mn(II) electron donation to Y(Z*) via the HA(Z) site and of the Fe-blocking effect is different. These results, together with sequence homologies between the C-terminal ends of the D1 and D2 polypeptides of the PSII reaction center and several diiron-oxo enzymes, suggest the involvement of two or perhaps more (to an upper limit of four to five) bound iron cations per reaction center of PSII in the blocking effect. Similarities in the interaction of Fe(II) and Mn(II) with the HA(Z) Mn site of PSII during the initial steps of the photoactivation process are discussed. The Fe-blocking effect was also used to investigate the relationship between the HA(Z) Mn site and the HA sites on PSII for diphenylcarbazide (DPC) and NH2OH oxidation. Blocking of the HA(Z) site with specifically bound Fe leads to the total inhibition of electron donation to Y(Z*) by DPC. Since DPC and Mn(II) donation to PSII is noncompetitive [Preston, C., and Seibert, M. (1991) Biochemistry 30, 9615-9624], the Fe bound to the HA(Z) site can also block the DPC donation site. On the other hand, electron donation by NH2OH to PSII still occurs in Fe-blocked membranes. Since hydroxylamine does not reduce the Fe [> or =Fe(III)] specifically bound to the HA(Z) site, NH2OH must donate to Y(Z*) through its own site or directly to P680+.  相似文献   

4.

Fe(II) cations bind with high efficiency and specificity at the high-affinity (HA), Mn-binding site (termed the “blocking effect” since Fe blocks further electron donation to the site) of the oxygen-evolving complex (OEC) in Mn-depleted, photosystem II (PSII) membrane fragments (Semin et al. in Biochemistry 41:5854, 2002). Furthermore, Fe(II) cations can substitute for 1 or 2Mn cations (pH dependent) in Ca-depleted PSII membranes (Semin et al. in Journal of Bioenergetics and Biomembranes 48:227, 2016; Semin et al. in Journal of Photochemistry and Photobiology B 178:192, 2018). In the current study, we examined the effect of Ca2+ cations on the interaction of Fe(II) ions with Mn-depleted [PSII(-Mn)] and Ca-depleted [PSII(-Ca)] photosystem II membranes. We found that Ca2+ cations (about 50 mM) inhibit the light-dependent oxidation of Fe(II) (5 µM) by about 25% in PSII(-Mn) membranes, whereas inhibition of the blocking process is greater at about 40%. Blocking of the HA site by Fe cations also decreases the rate of charge recombination between QA? and YZ?+ from t1/2?=?30 ms to 46 ms. However, Ca2+ does not affect the rate during the blocking process. An Fe(II) cation (20 µM) replaces 1Mn cation in the Mn4CaO5 catalytic cluster of PSII(-Ca) membranes at pH 5.7 but 2 Mn cations at pH 6.5. In the presence of Ca2+ (10 mM) during the substitution process, Fe(II) is not able to extract Mn at pH 5.7 and extracts only 1Mn at pH 6.5 (instead of two without Ca2+). Measurements of fluorescence induction kinetics support these observations. Inhibition of Mn substitution with Fe(II) cations in the OEC only occurs with Ca2+ and Sr2+ cations, which are also able to restore oxygen evolution in PSII(-Ca) samples. Nonactive cations like La3+, Ni2+, Cd2+, and Mg2+ have no influence on the replacement of Mn with Fe. These results show that the location and/or ligand composition of one Mn cation in the Mn4CaO5 cluster is strongly affected by calcium depletion or rebinding and that bound calcium affects the redox potential of the extractable Mn4 cation in the OEC, making it resistant to reduction.

  相似文献   

5.
Boris K. Semin  Michael Seibert 《BBA》2006,1757(3):189-197
The role of carboxylic residues at the high-affinity, Mn-binding site in the ligation of iron cations blocking the site [Biochemistry 41 (2000) 5854] was studied, using a method developed to extract the iron cations blocking the site. We found that specifically bound Fe(III) cations can be extracted with citrate buffer at pH 3.0. Furthermore, citrate can also prevent the photooxidation of Fe(II) cations by YZ. Participation of a COOH group(s) in the ligation of Fe(III) at the high-affinity site was investigated using 1-ethyl-3-[(3-dimethylamino)propyl] carbodiimide (EDC), a chemical modifier of carboxylic amino acid residues. Modification of the COOH groups inhibits the light-induced oxidation of exogenous Mn(II) cations by Mn-depleted photosystem II (PSII[−Mn]) membranes. The rate of Mn(II) oxidation saturates at ≥10 μM in PSII(−Mn) membranes and ≥500 μM in EDC-treated PSII (−Mn) samples. Intact PSII(−Mn) membranes have only one site for Mn(II) oxidation via YZ (dissociation constant, Kd = 0.64 μM), while EDC-treated PSII(−Mn) samples have two sites (Kd = 1.52 and 22 μM; the latter is the low-affinity site). When PSII(−Mn) membranes were incubated with Fe(II) before modifier treatment (to block the high-affinity site) and the blocking iron cations were extracted with citrate (pH 3.0) after modification, the membranes contained only one site (Kd = 2.3 μM) for exogenous Mn(II) oxidation by YZ radical. In this case, the rate of electron donation via YZ saturated at a Mn(II) concentration ≥15 μM. These results indicate that the carboxylic residue participating in Mn(II) coordination and the binding of oxidized manganese cations at the HAZ site is protected from the action of the modifier by the iron cations blocking the HAZ site. We concluded that the carboxylic residue (D1 Asp-170) participating in the coordination of the manganese cation at the HAZ site (Mn4 in the tetranuclear manganese cluster [Science 303 (2004) 1831]) is also involved in the ligation of the Fe cation(s) blocking the high-affinity Mn-binding site.  相似文献   

6.
Light-induced interaction of Fe(II) cations with the donor side of Mn-depleted photosystem II (PS II(–Mn)) results in the binding of iron cations and blocking of the high-affinity (HAZ) Mn-binding site. The pH dependence of the blocking was measured using the diphenylcarbazide/2,6-dichlorophenolindophenol test. The curve of the pH dependence is bell-shaped with pK 1 = 5.8 and pK 2 = 8.0. The pH dependence of the O2-evolution mediated by PS II membranes is also bellshaped (pK 2 = 7.6). The pH dependence of the process of electron donation from exogenous donors in PS II(–Mn) was studied to determine the location of the alkaline pH sensitive site of the electron transport chain. The data of the study showed that the decrease in the iron cation binding efficiency at pH > 7.0 during blocking was determined by the donor side of the PS II(–Mn). Mössbauer spectroscopy revealed that incubation of PS II(–Mn) membranes in a buffer solution containing 57Fe(II) + 57Fe(III) was accompanied by binding only Fe(III) cations. The pH dependence of the nonspecific Fe(III) cation binding is also described by the same bell-shaped curve with pK 2 = 8.1. The treatment of the PS II(–Mn) membranes with the histidine modifier diethylpyrocarbonate resulted in an increase in the iron binding strength at alkaline pH. It is suggested that blocking efficiency at alkaline pH is determined by competition between OH and histidine ligand for Fe(III). Because the high-affinity Mn-binding site contains no histidine residue, this fact can be regarded as evidence that histidine is located at another (other than high-affinity) Fe(III) binding site. In other words, this means that the blockage of the high-affinity Mn-binding site is determined by at least two iron cations. We assume that inactivation of oxygen-evolving complex and inhibition of photoactivation in the alkaline pH region are also determined by competition between OH and a histidine residue involved in coordination of manganese cation outside the high-affinity site.  相似文献   

7.
Ferrous iron cations Fe(II) can effectively bind to the donor side of the manganese-depleted photosystem II (PSII(-Mn)) and in this way block electron transfer from diphenylcarbazide (DPC) to the major donor for P680, YZ. The present study was focused on the characteristic features of this process. The oxidation and subsequent binding of Fe(II) cations to PSII(-Mn) may proceed in the absence of an artificial electron acceptor, and therefore we investigated the role of O2 as a putative endogenous acceptor. Oxygen was shown to participate in the blockade of YZ by Fe cations, apparently as a structural element of Fe cluster formed at the donor side of PSII(-Mn). The kinetic study of blocking YZ by Fe(II) as dependent on light intensity demonstrated that the quantum efficiency of Fe cations binding to the donor side of PSII(-Mn) considerably exceeded that of Mn cations. We also compared the possibilities of extracting the native Mn cluster and reconstructed Fe cations from PSII and an alternative electron transport from DPC to P680+ under the conditions of the YZ blockade by Fe cations. Neither an alternative donor for P680, YD , nor cytochrome b 559 participated in the latter process. As a whole, our evidence shows that many features of binding Fe cation to the donor side of PSII(-Mn) are in common with photoassembling the Mn cluster.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 12–20.Original Russian Text Copyright © 2005 by Lovyagina, Davletshina, Kultysheva, Timofeev, Ivanov, Semin.  相似文献   

8.
The electrons extracted from the CaMn(4) cluster during water oxidation in photosystem II are transferred to P(680)(+) via the redox-active tyrosine D1-Tyr161 (Y(Z)). Upon Y(Z) oxidation a proton moves in a hydrogen bond toward D1-His190 (His(Z)). The deprotonation and reprotonation mechanism of Y(Z)-OH/Y(Z)-O is of key importance for the catalytic turnover of photosystem II. By light illumination at liquid helium temperatures (~5 K) Y(Z) can be oxidized to its neutral radical, Y(Z)(?). This can be followed by the induction of a split EPR signal from Y(Z)(?) in a magnetic interaction with the CaMn(4) cluster, offering a way to probe for Y(Z) oxidation in active photosystem II. In the S(3) state, light in the near-infrared region induces the split S(3) EPR signal, S(2)'Y(Z)(?). Here we report on the pH dependence for the induction of S(2)'Y(Z)(?) between pH 4.0 and pH 8.7. At acidic pH the split S(3) EPR signal decreases with the apparent pK(a) (pK(app)) ~ 4.1. This can be correlated to a titration event that disrupts the essential H-bond in the Y(Z)-His(Z) motif. At alkaline pH, the split S(3) EPR signal decreases with the pK(app) ~ 7.5. The analysis of this pH dependence is complicated by the presence of an alkaline-induced split EPR signal (pK(app) ~ 8.3) promoted by a change in the redox potential of Y(Z). Our results allow dissection of the proton-coupled electron transfer reactions in the S(3) state and provide further evidence that the radical involved in the split EPR signals is indeed Y(Z)(?).  相似文献   

9.
To further characterize the role of D1-His190 in the oxidation of tyrosine Y(Z) in photosystem II, the pH dependence of P(680)(*)()(+) reduction was measured in H190A and Mn-depleted wild-type PSII particles isolated from the cyanobacterium, Synechocystis sp. PCC 6803. Measurements were conducted in the presence and absence of imidazole and other small organic bases. In H190A PSII particles, rapid reduction of P(680)(*)()(+) attributed to electron transfer from Y(Z) increased dramatically above pH 9, with an apparent pK(A) of approximately 10.3. In the presence of ethanolamine and imidazole, this dramatic increase occurred at lower pH values, with the efficiency of Y(Z) oxidation correlating with the solution pK(A) value of the added base. We conclude that the pK(A) of Y(Z) is approximately 10.3 in D1-H190A PSII particles. In Mn-depleted wild-type PSII particles, P(680)(*)()(+) reduction was accelerated by all exogenous bases examined (substituted imidazoles, histidine, Tris, and 1,4-diazabicyclo[2.2.2]octane). We conclude that Y(Z) is solvent accessible in Mn-depleted wild-type PSII particles and that its pK(A) is near that of tyrosine in solution. In Mn-depleted wild-type PSII particles, over 80% of the kinetics of P(680)(*)()(+) reduction after a flash could be described by three kinetic components. The individual rate constants of these components varied slightly with pH, but their relative proportions varied dramatically with pH, showing apparent pK(A) values of 7.5 and 6.25 (6.9 and 5.8 in the presence of Ca(2+) and Mg(2+) ions). An additional pK(A) value (pK(A) < 4.5) may also be present. To describe these data, we propose (1) the pK(A) of His190 is 6.9-7.5, depending on buffer ions, (2) the deprotonation of Y(Z) is facilitated by the transient formation of a either a hydrogen bond or a hydrogen-bonded water bridge between Y(Z) and D1-His190, and (3) when protonated, D1-His190 interacts with nearby residues having pK(A) values near 6 and 4. Because Y(Z) and D1-His190 are located near the Mn cluster, these residues may interact with the Mn cluster in the intact system.  相似文献   

10.
The catalytic Mn cluster of the photosynthetic oxygen-evolving system is oxidized via a tyrosine, Y(Z), by a photooxidized chlorophyll a moiety, P(+)(680). The rapid reduction of P(+)(680) by Y(Z) in nanoseconds requires the intactness of an acid/base cluster around Y(Z) with an apparent functional pK of <5. The removal of Mn (together with bound Ca) shifts the pK of the acid/base cluster from the acid into the neutral pH range. At alkaline pH the electron transfer (ET) from Y(Z) to P(+)(680) is still rapid (<1 micros), whereas at acid pH the ET is much slower (10-100 micros) and steered by proton release. In the intermediate pH domain one observes a mix of these kinetic components (see R. Ahlbrink, M. Haumann, D. Cherepanov, O. B?gershausen, A. Mulkidjanian, W. Junge, Biochemistry 37 (1998)). The overall kinetics of P(680)(+) reduction by Y(Z) in Mn-depleted photosystem II (PS II) has been previously shown to be slowed down by divalent cations (added at >10 microM), namely: Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) (C.W. Hoganson, P.A. Casey, O. Hansson, Biochim. Biophys. Acta 1057 (1991)). Using Mn-depleted PS II core particles from pea as starting material, we re-investigated this phenomenon at nanosecond resolution, aiming at the effect of divalent cations on the particular kinetic components of P(+)(680) reduction. To our surprise we found only the slower, proton steered component retarded by some added cations (namely Co(2+)/Zn(2+)>Fe(2+)>Mn(2+)). Neither the fast component nor the apparent pK of the acid/base cluster around Y(Z) was affected. Apparently, the divalent cations acted (electrostatically) on the proton release channel that connects the oxygen-evolving complex with the bulk water, but not on the ET between Y(Z) and P(+)(680), proper. Contrastingly, Ca(2+) and Mg(2+), when added at >5 mM, accelerated the slow component of P(+)(680) reduction by Y(Z) and shifted the apparent pK of Y(Z) from 7.4 to 6.6 and 6.7, respectively. It was evident that the binding site(s) for added Ca(2+) and Mg(2+) were close to Y(Z) proper. The data obtained are discussed in relation to the nature of the metal-binding sites in photosystem II.  相似文献   

11.
The great similarity between the binding of Fe(II) and the high-affinity Mn-binding site in the Mn-depleted PSII membranes (Semin et al. (1996) FEBS Lett. 375, 223–226) suggests that the coordination sphere of Mn in PSII is also suitable for iron. A comparison is performed between the primary amino acid sequences of D1 and D2 and diiron-oxo enzymes with the function of oxygen activation. All conservative motifs (EXXH) and residues binding and stabilizing the diiron cluster in diiron-oxo enzymes have been found in the C-terminal domains of D1 and D2 polypeptides. On the basis of these sequence similarities we suggest a structural model for the manganese cluster in the oxygen-evolving complex.  相似文献   

12.
C Preston  M Seibert 《Biochemistry》1991,30(40):9615-9624
The diphenylcarbazide(DPC)/Mn2+ assay [Hsu, B.-D., Lee, J.-Y., & Pan, R.-L. (1987) Biochim. Biophys. Acta 890, 89-96] was used to assess the amount of the high-affinity Mn-binding site in manganese-depleted photosystem II (PS II) membrane fragments from spinach and Scenedesmus obliquus. The assay mechanism at high DPC concentration was shown to involve noncompetitive inhibition of only half of the control level of DPC donation to PS II by micromolar concentrations of Mn at pH 6.5 (i.e., one of two DPC donation sites is inhibited). At low DPC concentration both DPC and Mn2+ donate to PS II additively. Treatment with the carboxyl amino acid modifier 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) inhibited half of the high-affinity Mn-binding site in spinach and Scenedesmus WT PS II membranes and all of the available site in Scenedesmus LF-1 mutant PS II membranes. A similar EDC concentration dependence was observed in all cases. Addition of 2 mM MnCl2 to the 10 mM EDC modification buffer provided complete protection for the Mn-binding site from modification. This protection was specific for Mn2+; six other divalent cations were ineffective. We conclude that EDC modifies that half of the high-affinity Mn-binding site that is insensitive to the histidine modifier diethyl pyrocarbonate (DEPC) [Seibert, M., Tamura, N., & Inoue, Y. (1989) Biochim. Biophys. Acta 974, 185-191] and directly affects ligands that bind Mn. The effects of EDC and DEPC that influence the high-affinity site are mutually exclusive and are specific to the lumenal side of the PS II membrane. Removal of the two more loosely bound of the four functional Mn from PS II membranes uncovers that part of the high-affinity site associated with carboxyl but not histidyl residues. We suggest that carboxyl residues on reaction center proteins are associated with half of the high-affinity Mn-binding site in PS II and are involved along with histidine residues in binding Mn functional in the O2-evolving process.  相似文献   

13.
We have studied how low pH affects the water-oxidizing complex in Photosystem II when depleted of the essential Ca(2+) ion cofactor. For these samples, it was found that the EPR signal from the Y(Z)(*) radical decays faster at low pH than at high pH. At 20 degrees C, Y(Z)(*) decays with biphasic kinetics. At pH 6.5, the fast phase encompasses about 65% of the amplitude and has a lifetime of approximately 0.8 s, while the slow phase has a lifetime of approximately 22 s. At pH 3.9, the kinetics become totally dominated by the fast phase, with more than 90% of the signal intensity operating with a lifetime of approximately 0.3 s. The kinetic changes occurred with an approximate pK(a) of 4.5. Low pH also affected the induction of the so-called split radical EPR signal from the S(2)Y(Z)(*) state that is induced in Ca(2+)-depleted PSII membranes because of an inability of Y(Z)(*) to oxidize the S(2) state. At pH 4.5, about 50% of the split signal was induced, as compared to the amplitude of the signal that was induced at pH 6.5-7, using similar illumination conditions. Thus, the split-signal induction decreased with an apparent pK(a) of 4.5. In the same samples, the stable multiline signal from the S(2) state, which is modified by the removal of Ca(2+), was decreased by the illumination to the same extent at all pHs. It is proposed that decreased induction of the S(2)Y(Z)(*) state at lower pH was not due to inability to oxidize the modified S(2) state induced by the Ca(2+) depletion. Instead, we propose that the low pH makes Y(Z)(*) able to oxidize the S(2) state, making the S(2) --> S(3) transition available in Ca(2+)-depleted PSII. Implications of these results for the catalytic role of Ca(2+) and the role of proton transfer between the Mn cluster and Y(Z) during oxygen evolution is discussed.  相似文献   

14.
Effects of formate on rates of O(2) evolution and electron paramagnetic resonance (EPR) signals were observed in the oxygen evolving PS II membranes as a function of pH. In formate treated PS II membranes, decrease in pH value resulted in the inhibition of the O(2) evolving activity, a decrease in the intensity of S(2) state multiline signal but an increase in the intensity of the Q(A)(-)Fe(2+) EPR signal. Time-resolved EPR study of the Y(Z)(*) decay kinetics showed that the light-induced intensity of Y(Z)(*) EPR signal was proportional to the formate concentration. The change in the pH affected both the light-induced intensities and the decay rates of Y(Z)(*), which was found to be faster at lower pH. At 253 K, t(1/e) value of Y(Z)(*) decay kinetics was found to be 8-10 s at pH 6.0 and 18-21 s at pH 5.0. The results presented here indicate that the extent of inhibition at the donor and the acceptor side of PS II due to formate is pH dependent, being more effective at lower pH.  相似文献   

15.
The role of D2-Tyr160 (Y(D)), a photooxidizable residue in the D2 reaction center polypeptide of photosystem II (PSII), was investigated in both wild type and a mutant strain (D2-Tyr160Phe) in which phenylalanine replaces Y(D) in the cyanobacterium Synechocystis sp. (strain PCC 6803). Y(D) is the symmetry-related tyrosine that is homologous to the essential photoactive Tyr161(Y(Z)) of the D1 polypeptide of PSII. We compared the flash-induced yield of O(2) in intact, functional PSII centers from both wild-type and mutant PSII core complexes. The yield of O(2) in the intact holo-enzyme was found to be identical in the mutant and wild-type PSII cores using long (saturating) pulses or continuous illumination, but was observed to be appreciably reduced in the mutant using short (nonsaturating) light pulses (<50 ms). We also compared the rates of the first two kinetically resolved steps of photoactivation. Photoactivation is the assembly process for binding of the inorganic cofactors to the apo-water oxidation/PSII complex (apo-WOC-PSII) and their light-induced photooxidation to form the functional Mn(4)Ca(1)Cl(x)() core required for O(2) evolution. We show that the D2-Tyr160Phe mutant cores can assemble a functional WOC from the free inorganic cofactors, but at a much slower rate and with reduced quantum efficiency vs wild-type PSII cores. Both of these observations imply that the presence of Y(D)(*) leads to a more efficient photooxidation of the Mn cluster relative to deactivation (reductive processes). One possible explanation for this behavior is that the phenolic proton on Y(D) is retained within the reaction center following Y(D) oxidation. The positive charge, likely shared by D2-His189 and other residues, raises the reduction potential of P(680)(+)/P(680), thereby increasing the driving force for the oxidation of Mn(4)Y(Z). There is, therefore, a competitive advantage to organisms that retain the Y(D) residue, possibly explaining its retention in all sequences of psbD (encoding the D2 polypeptide) known to date. We also find that the sequence of metal binding steps during assembly of apo-WOC-PSII centers in cyanobacteria cores differs from that in higher plants. This is seen by a reduced calcium affinity at its effector site and reduced competition for binding to the Mn(II) site, resulting in acceleration of the initial lagtime by Ca(2+), in contrast to retardation in spinach. Ca(2+) binding to its effector site promotes the stability of the photointermediates (IM1 and above) by suppressing unproductive decay.  相似文献   

16.
In intact PSII, both the secondary electron donor (Tyr(Z)) and side-path electron donors (Car/Chl(Z)/Cyt(b)(559)) can be oxidized by P(680)(+) at cryogenic temperatures. In this paper, the effects of acceptor side, especially the redox state of the non-heme iron, on the donor side electron transfer induced by visible light at cryogenic temperatures were studied by EPR spectroscopy. We found that the formation and decay of the S(1)Tyr(Z) EPR signal were independent of the treatment of K(3)Fe(CN)(6), whereas formation and decay of the Car(+)/Chl(Z)(+) EPR signal correlated with the reduction and recovery of the Fe(3+) EPR signal of the non-heme iron in K(3)Fe(CN)(6) pre-treated PSII, respectively. Based on the observed correlation between Car/Chl(Z) oxidation and Fe(3+) reduction, the oxidation of non-heme iron by K(3)Fe(CN)(6) at 0 degrees C was quantified, which showed that around 50-60% fractions of the reaction centers gave rise to the Fe(3+) EPR signal. In addition, we found that the presence of phenyl-p-benzoquinone significantly enhanced the yield of Tyr(Z) oxidation. These results indicate that the electron transfer at the donor side can be significantly modified by changes at the acceptor side, and indicate that two types of reaction centers are present in intact PSII, namely, one contains unoxidizable non-heme iron and another one contains oxidizable non-heme iron. Tyr(Z) oxidation and side-path reaction occur separately in these two types of reaction centers, instead of competition with each other in the same reaction centers. In addition, our results show that the non-heme iron has different properties in active and inactive PSII. The oxidation of non-heme iron by K(3)Fe(CN)(6) takes place only in inactive PSII, which implies that the Fe(3+) state is probably not the intermediate species for the turnover of quinone reduction.  相似文献   

17.
Ishikita H  Knapp EW 《Biochemistry》2005,44(45):14772-14783
In photosystem II (PSII), the redox properties of the non-heme iron complex (Fe complex) are sensitive to the redox state of quinones (Q(A/)(B)), which may relate to the electron/proton transfer. We calculated the redox potentials for one-electron oxidation of the Fe complex in PSII [E(m)(Fe)] based on the reference value E(m)(Fe) = +400 mV at pH 7 in the Q(A)(0)Q(B)(0) state, considering the protein environment in atomic detail and the associated changes in protonation pattern. Our model yields the pH dependence of E(m)(Fe) with -60 mV/pH as observed in experimental redox titration. We observed significant deprotonation at D1-Glu244 in the hydrophilic loop region upon Fe complex oxidation. The calculated pK(a) value for D1-Glu244 depends on the Fe complex redox state, yielding a pK(a) of 7.5 and 5.5 for Fe(2+) and Fe(3+), respectively. To account for the pH dependence of E(m)(Fe), a model involving not only D1-Glu244 but also the other titratable residues (five Glu in the D-de loops and six basic residues near the Fe complex) seems to be needed, implying the existence of a network of residues serving as an internal proton reservoir. Reduction of Q(A/B) yields +302 mV and +268 mV for E(m)(Fe) in the Q(A)(-)Q(B)(0) and Q(A)(0)Q(B)(-) states, respectively. Upon formation of the Q(A)(0)Q(B)(-) state, D1-His252 becomes protonated. Forming Fe(3+)Q(B)H(2) by a proton-coupled electron transfer process from the initial state Fe(2+)Q(B)(-) results in deprotonation of D1-His252. The two EPR signals observed at g = 1.82 and g = 1.9 in the Fe(2+)Q(A)(-) state of PSII may be attributed to D1-His252 with variable and fixed protonation, respectively.  相似文献   

18.
Arabidopsis thaliana is widely used as a model organism in plant biology as its genome has been sequenced and transformation is known to be efficient. A large number of mutant lines and genomic resources are available for Arabidopsis. All this makes Arabidopsis a useful tool for studies of photosynthetic reactions in higher plants. In this study, photosystem II (PSII) enriched membranes were successfully isolated from thylakoids of Arabidopsis plants and for the first time the electron transfer cofactors in PSII were systematically studied using electron paramagnetic resonance (EPR) spectroscopy. EPR signals from both of the donor and acceptor sides of PSII, as well as from auxiliary electron donors were recorded. From the acceptor side of PSII, EPR signals from Q(A)- Fe2(+) and Phe- Q(A)- Fe2(+) as well as from the free Phe- radical were observed. The multiline EPR signals from the S?- and S?-states of CaMn?O(x)-cluster in the water oxidation complex were characterized. Moreover, split EPR signals, the interaction signals from Y(Z) and CaMn?O(x)-cluster in the S?-, S?-, S?-, and the S?-state were induced by illumination of the PSII membranes at 5K and characterized. In addition, EPR signals from auxiliary donors Y(D), Chl(+) and cytochrome b??? were observed. In total, we were able to detect about 20 different EPR signals covering all electron transfer components in PSII. Use of this spectroscopic platform opens a possibility to study PSII reactions in the library of mutants available in Arabidopsis.  相似文献   

19.
The reduction of tyrosine Y(.)(Z) by benzidine and exogenous Mn(2+) was studied by kinetic EPR experiments in various Photosystem II (PSII) preparations. Using lanthanide treated PSII membranes it was demonstrated that neither the extrinsic polypeptides (17, 23 and 33 kDa) nor the Mn complex block the accessibility of Y(.)(Z) to exogenous reductants, such as benzidine. In addition, it was shown that in the presence of the native Mn complex exogenous Mn(2+) does not reduce Y(.)(Z).  相似文献   

20.
Hydroxyl radical generation by photosystem II   总被引:1,自引:0,他引:1  
The photogeneration of hydroxyl radicals (OH(*)) in photosystem II (PSII) membranes was studied using EPR spin-trapping spectroscopy. Two kinetically distinguishable phases in the formation of the spin trap-hydroxyl (POBN-OH) adduct EPR signal were observed: the first phase (t(1/2) = 7.5 min) and the second phase (t(1/2) = 30 min). The generation of OH(*) was found to be suppressed in the absence of the Mn-complex, but it was restored after readdition of an artificial electron donor (DPC). Hydroxyl radical generation was also lost in the absence of oxygen, whereas it was stimulated when the oxygen concentration was increased. The production of OH(*) during the first kinetic phase was sensitive to the presence of SOD, whereas catalase and EDTA diminished the production of OH(*) during the second kinetic phase. The POBN-OH adduct EPR signal during the first phase exhibits a similar pH-dependence as the ability to oxidize the non-heme iron, as monitored by the Fe(3+) (g = 8) EPR signal: both EPR signals gradually decreased as the pH value was lowered below pH 6.5 and were absent at pH 5. Sodium formate decreases the production of OH(*) in intact and Mn-deleted PSII membranes. Upon illumination of PSII membranes, both superoxide, as measured by EPR signal from the spin trap-superoxide (EMPO-OOH) adduct, and H(2)O(2), measured colormetrically, were generated. These results indicated that OH(*) is produced on the electron acceptor side of PSII by two different routes, (1) O(2)(*)(-), which is generated by oxygen reduction on the acceptor side of PSII, interacts with a PSII metal center, probably the non-heme iron, to form an iron-peroxide species that is further reduced to OH(*) by an electron from PSII, presumably via Q(A)(-), and (2) O(2)(*)(-) dismutates to form free H(2)O(2) that is then reduced to OH(*) via the Fenton reaction in the presence of metal ions, the most likely being Mn(2+) and Fe(2+) released from photodamaged PSII. The two different routes of OH(*) generation are discussed in the context of photoinhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号