首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2S albumin genes of Arabidopsis thaliana are a model system to study gene expression during late embryogenesis. The at2S1 gene has previously been shown to be expressed essentially in the embryo axis, unlike at2S2, which is expressed throughout the embryo. Hybrid promoter constructs between at2S1 and at2S2 were introduced into Arabidopsis and used to identify a cotyledon regulatory region necessary for 2S albumin expression in palisade parenchyma and specific epidermal cells. Other promoter sequences flanking this tissue-specific promoter element were shown to control mRNA expression levels independently of the mRNA distribution throughout the embryos. Certain hybrid promoters resulted in the alteration of the time course of expression in cotyledons. Differential expression of 2S albumin genes is discussed in terms of layered cellular organization and mitotic activity throughout the embryo.  相似文献   

2.
Recently, we reported on the characterization of the calmodulin (CaM) gene family in wheat [44]. We classified wheat CaM genes into four subfamilies (SFs) designated SF-1 to SF-4, each representing a series of homoeoallelic loci on the homoeologous chromosomes of the three genomes of common wheat. Here we studied the expression of these wheat CaM genes in the course of wheat development. Northern blot analysis using SF-specific probes revealed differences in SF expression levels in different organs and stages of development. Subsequently, cell-specific expression of CaM SFs was investigated by in situ RNA hybridization. In developing seeds, all CaM SFs showed highest expression in the embryo and less in the aleurone and in the starchy endosperm. In primary roots, all four CaM SFs were expressed in the root cap, meristematic regions and in differentiating cells. During development of the roots, expression gradually decreased. The wheat glutenin gene, which was used as a control throughout our experiments, was found to be expressed in the starchy endosperm but not in the aleurone, embryos or vegetative tissues. In stems, at advanced stages of growth, differences in cell-specific expression of CaM SFs were found. For example, SF-2 was highly expressed in differentiating phloem fibers. Thus, CaM genes in common wheat exhibit a developmentally regulated organ-, tissue-, cell- and SF-specific expression patterns.  相似文献   

3.
4.
The sequence of a mouse Hox 2.9 cDNA clone is presented. The predicted homeodomain is similar to that of the Drosophila gene labial showing 80% identity. The equivalent gene in the Hox 1 cluster is Hox 1.6 which shows extensive similarity to Hox 2.9 both within and outside the homeodomain. Hox 2.9 and Hox 1.6 are the only two mouse members of the labial-like family of homeobox-containing genes as yet identified. Hox 2.9 has previously been shown to be expressed in a single segmental unit of the developing hindbrain (rhombomere) and has been predicted to be involved in conferring rhombomere identity. To analyse further the function of Hox 2.9 during development and to determine if the other mouse labial-like gene Hox 1.6, displays similar properties, we have investigated the expression patterns of these two genes and an additional rhombomere-specific gene, Krox 20, on consecutive embryonic sections at closely staged intervals. This detailed analysis has enabled us to draw the following conclusions: (1) There are extensive similarities in the temporal and spatial expression of Hox 2.9 and Hox 1.6, throughout the period that both genes are expressed in the embryo (7 1/2 to 10 days). At 8 days the genes occupy identical domains in the neuroectoderm and mesoderm with the same sharp anterior boundary in the presumptive hindbrain. These similarities indicate a functional relationship between the genes and further suggest that the labial-like genes are responding to similar signals in the embryo. (2) By 9 days the neuroectoderm expression of both genes retreats posteriorly along the anteroposterior (AP) axis. The difference at this stage between the expression patterns is the persistence of Hox 2.9 in a specific region of the hindbrain, illustrating the capacity of Hox 2.9 to respond to additional positional regulatory signals and indicating a unique function for this gene in the hindbrain. (3) The restriction of Hox 2.9 expression in the hindbrain occurs at 8 1/2 days, approximately the same time as Krox 20 is first detected in the posterior adjoining domain. The mutually exclusive expression of Hox 2.9 and Krox 20 demarcated by sharp expression boundaries suggest that compartmentalisation of cells within the hindbrain has occurred up to 6 h before rhombomeres (morphological segments) are clearly visible. (4) Hox 2.9 expression is confined to the region of rhombomere 4 that shows cell lineage restriction and, unlike Krox 20, is expressed throughout the period that rhombomeres are visible (to 11 1/2 days).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
Alvarez E  Zhou W  Witta SE  Freed CR 《Gene》2005,357(1):18-28
To better understand the development of ventral mesencephalic dopamine neurons, we performed subtractive hybridization screens to find ventral mesencephalic genes expressed at rat embryonic day 10 when these neurons begin to differentiate. The most commonly identified genes in these screens were members of the Bex (Brain expressed X-linked) gene family, rat Bex1 (Rex3), and a novel gene, rat Bex4. After identifying these genes, we then sought to characterize the Bex gene family. Two additional novel Bex genes (human Bex5 and mouse Bex6) were discovered through genomic databases. Bex5 is present in humans and monkeys, but not rodents, while Bex6 exists in mice, but not humans. Bex4 and Bex5 are localized to the X chromosome, are expressed in brain, and are similar in sequence. Bex4 and Bex5 are 54% and 56% identical to human Bex3 (pHGR74, NADE). Mouse Bex6 is on chromosome 16 and is 67% identical to mouse Bex4. Human Bex gene expression was studied with tissue expression arrays probed with specific oligonucleotides. Human Bex1 and Bex2 have similar expression patterns in the central nervous system with high levels in pituitary, cerebellum, and temporal lobe, and Bex1 is widely expressed outside of the central nervous system with high expression in the liver. Human Bex4 is highly expressed in heart, skeletal muscle, and liver, while Bex3 and Bex5 are more widely expressed. The subcellular localization of the Bex proteins varies from nuclear (rat Bex1) to cytoplasmic (rat Bex3, human Bex5, and mouse Bex6) and to both nuclear and cytoplasmic (rat Bex2 and rat Bex4). Rat Bex3, rat Bex4, human Bex5, and mouse Bex6 are degraded by the proteasome, while rat Bex1 or Bex2 are not. Rat Bex3 protein can likely bind transition metals through a histidine-rich domain. Because this gene family was originally named Bex and because these genes are unified by sequence similarity and gene structure, we believe the Bex nomenclature should prevail over nomenclature based on function (NADE) that has not been extended to the other Bex genes. We conclude that the Bex gene family members are highly homologous but differ in their expression patterns, subcellular localization, and degradation by the proteasome.  相似文献   

7.
We have investigated the expression of 14 cloned genes of the 20-member actin multigene family of Dictyostelium discoideum using gene-specific mRNA complementary probes and an RNase protection assay. Actin gene expression was studied in vegetative cells and in cells at a number of developmental stages chosen to represent the known major shifts in actin mRNA and protein synthesis. At least 13 of these genes are expressed. A few genes are expressed very abundantly at 10% or more of total actin mRNA; however, the majority are maximally expressed at 1 to 5% of actin message. Although all of the genes are transcribed in vegetative cells, most genes appear to be independently regulated. Actin 8 appears to be transcribed at constant, high levels throughout growth and development. Actin 12 mRNA is maximally expressed in vegetative cells but the level is reduced appreciably by the earliest stage of development examined, while Actin 7 mRNA is specifically induced approximately sevenfold at this time. The rest of the genes appear to be induced 1.5 to 2-fold early in development, coincident with the increase in total actin mRNA. Since 12 of the genes code for extremely homologous proteins, it is possible that the large number of actin genes in Dictyostelium is utilized for precise regulation of the amount of actin produced at any stage of development, even though individual gene expression appears in some cases to be very stage-specific. In addition to these 13 actin genes, at least two and possibly four more genes are known to be expressed, because they are represented by complementary DNA clones, and an additional one or two expressed genes are indicated by primer extension experiments. Only one known gene, Actin 2-sub 2, is almost certainly a pseudogene. Thus the vast majority of Dictyostelium actin genes are expressed.  相似文献   

8.
We have analysed the expression during mouse development of the four member Lingo/LERN gene family which encodes type 1 transmembrane proteins containing 12 extracellular leucine rich repeats, an immunoglobulin C2 domain and a short intracellular tail. Each family member has a distinct pattern of expression in the mouse embryo as is the case for the related NLRR, FLRT and LRRTM gene families. Lingo1/LERN1 is expressed in the developing trigeminal, facio-acoustic and dorsal root ganglia. An interesting expression pattern is also observed in the somites with expression localising to the inner surface of the dermomyotome in the ventro-caudal lip. Further expression is seen in lateral cells of the hindbrain and midbrain, lateral cells in the motor horn of the neural tube, the otic vesicle epithelium and epithelium associated with the developing gut. Lingo3/LERN2 is expressed in a broad but specific pattern in many tissues across the embryo. Lingo2/LERN3 is seen in a population of cells lying adjacent to the epithelial lining of the olfactory pit while Lingo4/LERN4 is expressed in the neural tube in a subset of progenitors adjacent to the motor neurons. Expression of all Lingo/LERN genes increases as the embryo develops but is low in the adult with only Lingo1/LERN1 and Lingo2/LERN3 being detectable in adult brain.  相似文献   

9.
Using a series of oligonucleotide probes (18-21 mers) specific for members of the rat kallikrein/tonin (arginyl-esteropeptidase) gene family (PS, S1, S2, S3, K1, P1), we have shown by Northern blot analysis that all six genes are expressed in the submandibular gland (SMG), with PS (true kallikrein) the most abundant in both male and female rats. Though female levels of PS mRNA are similar to that in the male, levels of mRNA from both the kallikrein-like (S1, K1, P1) and tonin (S2)/tonin-like (S3) genes are all substantially lower in the female than in the male rat. In contrast with the oestrogen dependence of anterior pituitary kallikrein (PS) gene expression, oestrogen administration (6 micrograms/day for 8 days) to castrate male or female rats is without effect on PS or S1, S2, S3, K1, P1 mRNA levels in the SMG. These findings suggest a tissue-specificity in the oestrogen regulation of true kallikrein gene expression in the two tissues. In intact male rats, oestrogen administration lowers SMG levels of S1, S2, S3, K1, and P1 but not PS mRNA to castrate levels, presumably by suppression of the pituitary/gonadal axis, consistent with the previously reported androgen dependence of SMG expression of these genes with the exception of PS.  相似文献   

10.
11.
12.
The ribosomal S6 kinase family members RSK2 (RPS6KA3) and RSK4 (RPS6KA6) belong to the group of X chromosomal genes, in which defects cause unspecific mental retardation (MRX) in humans. In this study, we investigated the spatiotemporal expression pattern of these genes during mouse development with emphasis to midgestation stages. Additionally, we analyzed the expression of the phosphoinositide-dependent protein kinase-1 gene, Pdk1 (Pspk1), which is essential for the activation of Rsk family members and thus regulates their function. During midgestation we observed specifically enhanced expression of Rsk2 first in somites, later restricted to the dermatomyotome of the somites, then in the sensory ganglia of cranial nerves and in the dorsal root ganglia of the spinal nerves. High Rsk2 expression in the cranial nerve ganglia persists throughout development and is correlated with Pdk1 expression. In the brain of 2-day-old mice, Pdk1 is expressed in the cortical plate of the cerebral cortex and in the stratum pyramidale of the hippocampus, whereas Rsk2 expression is lower in these structures. For Rsk4 ubiquitous expression at lower levels was observed throughout development.  相似文献   

13.
14.
Sakamoto H  Araki T  Meshi T  Iwabuchi M 《Gene》2000,248(1-2):23-32
The genes encoding Cys(2)/His(2)-type zinc-finger proteins constitute a large family in higher plants. To elucidate the functional roles of these types of protein, four different members of the gene family were cloned from Arabidopsis by PCR-aided methods. One was identical to the already reported gene STZ/ZAT10 and three were as yet unidentified genes, then designated AZF1 (Arabidopsis zinc-finger protein 1), AZF2 and AZF3. The AZF- and STZ-encoded proteins contain two canonical Cys(2)/His(2)-type zinc-finger motifs, separated by a long spacer. Three conserved regions, named B-box, L-box, and DNL-box, were also recognized outside the zinc-finger motifs, as in other members of the two-fingered Cys(2)/His(2)-type zinc-finger protein family. These four genes were positioned on the same branch of a phylogenetic tree constructed based on the zinc-finger motif sequences, suggesting their structural and functional relationship. RNA blot analysis showed that all four genes were mainly expressed in roots and at different levels in other organs. Expression of the four genes responded to water stress. High-salt treatment resulted in elevated levels of expression of all of these genes. Low-temperature treatment increased the expression levels of AZF1, AZF3, and STZ, but not AZF2. Only AZF2 expression was strongly induced by ABA treatment, where the time course of the induction was similar to that caused by high salinity. In situ localization showed that AZF2 mRNA accumulated in the elongation zone of the roots under the salt-stress condition. These results suggest that AZF1, AZF2, AZF3, and STZ are all involved in the water-stress response in an ABA-dependent or -independent pathway to regulate downstream genes.  相似文献   

15.
The Cre/lox site-specific recombination system was used to activate a transgene in a tissue-specific manner. Cre-mediated activation of a beta-glucuronidase marker gene, by removal of a lox-bounded blocking fragment, allowed the visualization of the activation process. By using seed-specific promoters, the timing and efficiency of gene activation could be followed within the developing tobacco (Nicotiana tabacum) embryo. To serve as a basis for analyzing gene expression after-Cre-mediated activation, the timing and patterns of expression of the promoters of the genes encoding French bean (Phaseolus vulgaris) beta-phaseolin and the alpha' subunit of soybean (Glycine max) beta-conglycinin, as well as the cauliflower mosaic virus 35S promoter, were studied in developing transgenic tobacco embryos using the same visual marker. These seed-specific promoters were expressed earlier than anticipated. The 35S promoter was expressed earlier than the seed-specific promoters, but not in globular-stage embryos. Cre-mediated gene activation occurred approximately 1 d after promoter activation, based on developmental staging, and spread progressively throughout the embryo. The timing of gene activation was varied by altering Cre expression. Efficient Cre expression ultimately directed gene activation throughout the model tissue, whereas inefficient Cre expression resulted in mosaic tissue. Limited gene activation provides a system for cell lineage and developmental analyses.  相似文献   

16.
17.
为了探讨花斑裸鲤(Gymnocypris eckloni)血红蛋白时序转换 利用花斑裸鲤全基因组数据鉴定胚胎/仔鱼型血红蛋白基因家族成员, 并通过整胚原位杂交方法, 检测花斑裸鲤胚胎/仔鱼型血红蛋白基因在胚胎发育不同阶段的表达及定位。结果表明, 花斑裸鲤基因组中共鉴定到5个胚胎/仔鱼型血红蛋白基因, 分别为hbae1、hbae4、hbae5、hbbe1和hbbe3, 与斑马鱼(Danio rerio)相比, 花斑裸鲤基因组缺少hbae3和 hbbe2 基因, 暗示第四轮全基因组复制事件后所经历的小规模基因删除事件在花斑裸鲤特异性血红蛋白基因形成中发挥了重要作用。整胚原位杂交结果显示, hbae1基因在胚胎发育的120h至432h内持续表达, hbbe1基因在96h开始表达持续至432h, hbbe3基因杂交信号出现在胚胎发育120h至384h内, 在胚胎发育全过程中未能观察到hbae4和hbae5基因的杂交信号。杂交信号主要位于胚胎正中轴、后部侧向中胚层、背主动脉腹侧区、尾部造血区及卵黄。正义探针作为阴性对照, 在胚胎发育阶段均无任何杂交信号。花斑裸鲤具有与其他鱼类不同的胚胎/仔鱼型血红蛋白基因家族成员及血红蛋白转换表达特征; hbae1、hbbe1和hbbe3基因在花斑裸鲤早期胚胎发育过程中发挥重要作用, 而hbae4和hbae5基因的生物学功能可能有所弱化。  相似文献   

18.
Late embryogenesis abundant (lea) genes are a large and diverse group of genes highly expressed during late stages of seed development. Five major groups of LEA proteins have been described. Two Em genes (group I lea genes) are present in the genome of Arabidopsis thaliana L., AtEm1 and AtEm6. Both genes encode for very similar proteins which differ basically in the number of repetitions of a highly hydrophilic amino acid motif. The spatial patterns of expression of the two Arabidopsis Em genes have been studied using in situ hybridization and transgenic plants transformed with the promoters of the genes fused to the beta-glucuronidase reporter gene (uidA). In the embryo, AtEm1 is preferentially expressed in the pro-vascular tissues and in meristems. In contrast, AtEm6 is expressed throughout the embryo. The activity of both promoters disappears rapidly after germination, but is ABA-inducible in roots of young seedlings, although in different cells: the AtEm1 promoter is active in the internal tissues (vasculature and pericycle) whereas the AtEm6 promoter is active in the external tissues (cortex, epidermis and root hairs). The AtEm1 promoter, but not AtEm6, is also active in mature pollen grains and collapsed nectaries of young siliques. These data indicate that the two Em proteins could carry out at least slightly different functions and that the expression of AtEm1 and AtEm6 is controlled at, at least, three different levels: temporal, spatial and hormonal (ABA).  相似文献   

19.
20.
Cancer-testis antigens of the Mage family (Melanoma antigens) are expressed predominantly in the spermatogenic and cancer cells, but some genes of this family are expressed ubiquitously. Expression patterns and functional role of Mage family antigens in the regulation of cellular processes in normal embryonic and definitive cells are virtually unknown. Comparative immunofluorescent analysis of Mage expression in mouse oocytes and early embryos identified the expression of Mage antigens at all stages studied. The greatest intensity of the fluorescent staining was detected in the epiblasts and the extraembryonic structures of the egg cylinder at E6.5 stage. At all studied developmental stages of the mouse oocyte and the early embryo, the localization of Mage antigens was found predominantly in the cytoplasm. Quantitative real-time PCR showed that expression levels of most Mage genes in cells of the epiblast and ectoplacental cone were similar, while the gene expression levels of Mage-a10, Mage-b16, and Mage-b18 were higher in cells of the ectoplacental cone than in epiblast cells. Thus, for the first time, our analysis has shown that the Mage family antigens are expressed at the early stages of mouse development and may be involved in the regulation of earliest events of embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号