首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of natural selection leaves signatures in our genome that can be used to identify functionally important amino acid changes in proteins. In natural populations, amino acids that are better adapted to local conditions might increase in frequency, whereas moderately to severely deleterious protein mutations tend to be eliminated and do not contribute to protein differences between species. Amino acid mutations with no fitness consequences are, however, lost or fixed without regard to natural selection. Looking for evidence of natural selection is, therefore, an attractive strategy for characterizing the contribution of a residue to protein function. Because the majority of identified selenoproteins have now been found in Cys-form, the extent of exchangeability between Sec and Cys residues can be measured in proteins over long periods of time. The statistical analysis of the pattern of Sec/Cys exchanges in diversity (within species) and divergence (between species) data, provides robust inferences of the strength and mode of natural selection acting on these protein sites. Such inferences inform us not only of the long-term exchangeability between Sec and Cys residues, but also of the nature of the selective factors shaping Sec usage in proteins.  相似文献   

2.
We outline a method for estimating quantitatively the influence of point mutations and selection on the frequencies of codons and amino acids. We show how the mutation rate, i.e., the rate of amino acid replacement due to point mutation, can be affected by the codon usage as well as by the rates of the involved base exchanges. A comparison of the mutation rates calculated from reliable values of codon usage and base exchange probabilities with those that would be expected on the basis of chance reveals a notable suppression of replacements leading to tryptophan, glutamate, lysine, and methionine, and particularly of those leading to the termination codons. If selection constraints are neglected and only mutations are taken into account, the best agreement between expected and observed frequencies of both codons and amino acids is obtained for alpha = 1.13-1.15, where (Formula: see text). The "selection values" of codons and amino acids derived by our method show a pattern that partially deviates from others in the literature. For example, the selection pressure on methionine and cysteine turns out to be much more pronounced than expected if only the discrepancies between their observed and expected occurrences in proteins are considered. To estimate to what extent randomly occurring amino acid replacements are accepted by selection, we constructed an "acceptability matrix" from the well-established matrix of accepted point mutations. On the basis of this matrix "acceptability values" of the amino acids can be defined that correlate with their selection values. We also examine the significance of mutations and selection of amino acids with respect to their physicochemical properties and functions in proteins. The conservatism of amino acid replacements with respect to certain properties such as polarity can be brought about by the mutational process alone, whereas the conservatism with respect to other relevant properties--among them all measures of bulkiness--obviously is the result of additional selectional constraints on the evolution of protein structures.  相似文献   

3.
Since the genetic code first was determined, many have claimed that it is organized adaptively, so as to assign similar codons to similar amino acids. This claim has proved difficult to establish due to the absence of relevant comparative data on alternative primordial codes and of objective measures of amino acid exchangeability. Here we use a recently developed measure of exchangeability to evaluate a null hypothesis and two alternative hypotheses about the adaptiveness of the genetic code. The null hypothesis that there is no tendency for exchangeable amino acids to be assigned to similar codons can be excluded here as expected from earlier work. The first alternative hypothesis is that any such correlation between codon distance and amino acid distance is due to incremental mechanisms of code evolution, and not to adaptation to reduce deleterious effects of future mutations. More specifically, new codon assignments that occur by ambiguity reduction or by codon capture will tend to give rise to correlations, whether due to the condition of amino acid ambiguity, or to the condition of similarity between a new tRNA synthetase (or tRNA) and its parent. The second alternative hypothesis, the adaptive hypothesis, then may be defined as an excess relative to what may be expected given the incremental nature of evolution, reflecting true adaptation for robustness rather than an incidental effect. The results reported here indicate that most of the nonrandomness in the amino acids to codon assignments can be explained by incremental code evolution, with a small residue of orderliness that may reflect code adaptation.  相似文献   

4.
There is a critical need to understand why missense mutations are deleterious. The deleterious effects of missense mutations are commonly attributed to their impact on primary amino acid sequence and protein structure. However, several recent studies have shown that some missense mutations are deleterious because they disturb cis-acting splicing elements-so-called "exonic splicing enhancers" (ESEs). It is not clear whether the ESE-related deleterious effects of missense mutations are common. We have evaluated colocalization of pathogenic missense mutations (found in affected individuals) with high-score ESE motifs in the human mismatch-repair genes hMSH2 and hMLH1. We found that pathogenic missense mutations in the hMSH2 and hMLH1 genes are located in ESE sites significantly more frequently than expected. Pathogenic missense mutations also tended to decrease ESE scores, thus leading to a higher propensity for splicing defects. In contrast, nonpathogenic missense mutations (polymorphisms found in unaffected individuals) and nonsense mutations are distributed randomly in relation to ESE sites. Comparison of the observed and expected frequencies of missense mutations in ESE sites shows that pathogenic effects of >/=20% of mutations in hMSH2 result from disruption of ESE sites and disturbed splicing. Similarly, pathogenic effects of >/=16% of missense mutations in the hMLH1 gene are ESE related. The colocalization of pathogenic missense mutations with ESE sites strongly suggests that their pathogenic effects are splicing related.  相似文献   

5.
A total of 940 amber mutants in gene E of bacteriophage lambda was isolated to study the structure-function relationship of the gene product, the major capsid protein. The mutants were mapped to 43 mutation sites, most of which have been located, albeit tentatively, at exact points in the known base sequence, by deletion mapping and by the specificity of mutagenesis and the patterns of suppression. The patterns of suppression were interpreted in terms of both the efficiency of insertion of amino acid residues by suppressors and the exchangeability of amino acid residues. The exchangeability seems to be related to the hydrophilicity of the residues themselves and their environment, as well as to the functional similarity between the replaced and the inserted amino acid residues. Suppression of two of the mutations resulted in the production of characteristic aberrant head-related structures, each showing a defect in a different functional site in the protein. This, together with the approximate positions of some specific missense mutations as determined in this study, revealed the distribution of the functional sites along the polypeptide chain of the gene E product.  相似文献   

6.
Summary Chou-Fasman parameters, measuring preferences of each amino acid for different conformational regions in proteins, were used to obtain an amino acid difference index of conformational parameter distance (CPD) values. CPD values were found to be significantly lower for amino acid exchanges representing in the genetic code transitions of purines, GA than for exchanges representing either transitions of pyrimidines, CU, or transversions of purines and pyrimidines. Inasmuch as the distribution of CPD values in these non GA exchanges resembles that obtained for amino acid pairs with double or triple base differences in their underlying codons, we conclude that the genetic code was not particularly designed to minimize effects of mutation on protein conformation. That natural selection minimizes these changes, however, was shown by tabulating results obtained by the maximum parsimony method for eight protein genealogies with a total occurrence of 4574 base substitutions. At the beginning position of the codons GA transitions were in very great excess over other base substitutions, and, conversely, CU transitions were deficient. At the middle position of the codons only fast evolving proteins showed an excess of GA transitions, as though selection mainly preserved conformation in these proteins while weeding out mutations affecting chemical properties of functional sites in slow evolving proteins. In both fast and slow evolving proteins the net direction of transitions and transversions was found to be from G beginning codons to non-G beginning codons resulting in more commonly occurring amino acids, especially alanine with its generalized conformational properties, being replaced at suitable sites by amino acids with more specialized conformational and chemical properties. Historical circumstances pertaining to the origin of the genetic code and the nature of primordial proteins could account for such directional changes leading to increases in the functional density of proteins.In order to further explore the course of protein evolution, a modified parsimony algorithm was developed for constructing protein genealogies on the basis of minimum CPD length. The algorithm's ability to judge with finer discrimination that in protein evolution certain pathways of amino acid substitution should occur more readily than others was considered a potential advantage over strict maximum parsimony. In developing this CPD algorithm, the path of minimum CPD length through intermediate amino acids allowed by the genetic code for each pair of amino acids was determined. It was found that amino acid exchanges representing two base changes have a considerably lower average CPD value per base substitution than the amino acid exchanges representing single base changes. Amino acid exchanges representing three base changes have yet a further marked reduction in CPD per base change. This shows how extreme constraining effects of stabilizing selection can be circumvented, for by way of intermediate amino acids almost any amino acid can ultimately be substituted for another without damage to an evolving protein's conformation during the process.  相似文献   

7.
We develop an approximate maximum likelihood method to estimate flanking nucleotide context-dependent mutation rates and amino acid exchange-dependent selection in orthologous protein-coding sequences and use it to analyze genome-wide coding sequence alignments from mammals and yeast. Allowing context-dependent mutation provides a better fit to coding sequence data than simpler (context-independent or CpG "hotspot") models and significantly affects selection parameter estimates. Allowing asymmetric (nonreciprocal) selection on amino acid exchanges gives a better fit than simple dN/dS or symmetric selection models. Relative selection strength estimates from our models show good agreement with independent estimates derived from human disease-causing and engineered mutations. Selection strengths depend on local protein structure, showing expected biophysical trends in helical versus nonhelical regions and increased asymmetry on polar-hydrophobic exchanges with increased burial. The more stringent selection that has previously been observed for highly expressed proteins is primarily concentrated in buried regions, supporting the notion that such proteins are under stronger than average selection for stability. Our analyses indicate that a highly parameterized model of mutation and selection is computationally tractable and is a useful tool for exploring a variety of biological questions concerning protein and coding sequence evolution.  相似文献   

8.
A new family of protein domains consisting of 50-80 amino acid residues is described. It is composed of nearly 40 members, including domains encoded by plastid and phage group I introns; mitochondrial, plastid, and bacterial group II introns; eubacterial genomes and plasmids; and phages. The name "EX1HH-HX3H" was coined for both domain and family. It is based on 2 most prominent amino acid sequence motifs, each encompassing a pair of highly conserved histidine residues in a specific arrangement: EX1HH and HX3H. The "His" motifs often alternate with amino- and carboxy-terminal motifs of a new type of Zn-finger-like structure CX2,4CX29-54[CH]X2,3[CH]. The EX1HH-HX3H domain in eubacterial E2-type bacteriocins and in phage RB3 (wild variant of phage T4) product of the nrdB group I intron was reported to be essential for DNA endonuclease activity of these proteins. In other proteins, the EX1HH-HX3H domain is hypothesized to possess DNase activity as well. Presumably, this activity promotes movement (rearrangement) of group I and group II introns encoding the EX1HH-HX3H domain and other gene targets. In the case of Escherichia coli restrictase McrA and possibly several related proteins, it appears to mediate the restriction of alien DNA molecules.  相似文献   

9.
Systematic mappings of the effects of protein mutations are becoming increasingly popular. Unexpectedly, these experiments often find that proteins are tolerant to most amino acid substitutions, including substitutions in positions that are highly conserved in nature. To obtain a more realistic distribution of the effects of protein mutations, we applied a laboratory drift comprising 17 rounds of random mutagenesis and selection of M.HaeIII, a DNA methyltransferase. During this drift, multiple mutations gradually accumulated. Deep sequencing of the drifted gene ensembles allowed determination of the relative effects of all possible single nucleotide mutations. Despite being averaged across many different genetic backgrounds, about 67% of all nonsynonymous, missense mutations were evidently deleterious, and an additional 16% were likely to be deleterious. In the early generations, the frequency of most deleterious mutations remained high. However, by the 17th generation, their frequency was consistently reduced, and those remaining were accepted alongside compensatory mutations. The tolerance to mutations measured in this laboratory drift correlated with sequence exchanges seen in M.HaeIII’s natural orthologs. The biophysical constraints dictating purging in nature and in this laboratory drift also seemed to overlap. Our experiment therefore provides an improved method for measuring the effects of protein mutations that more closely replicates the natural evolutionary forces, and thereby a more realistic view of the mutational space of proteins.  相似文献   

10.
Most cancer-associated BRCA1 mutations identified to date result in the premature translational termination of the protein, highlighting a crucial role for the C-terminal, BRCT repeat region in mediating BRCA1 tumor suppressor function. However, the molecular and genetic effects of missense mutations that map to the BRCT region remain largely unknown. Using a protease-based assay, we directly assessed the sensitivity of the folding of the BRCT domain to an extensive set of truncation and single amino acid substitutions derived from breast cancer screening programs. The protein can tolerate truncations of up to 8 amino acids, but further deletion results in drastic BRCT folding defects. This molecular phenotype can be correlated with an increased susceptibility to disease. A cross-validated computational assessment of the BRCT mutation data base suggests that as much as half of all BRCT missense mutations contribute to BRCA1 loss of function and disease through protein-destabilizing effects. The coupled use of proteolytic methods and computational predictive methods to detect mutant BRCA1 conformations at the protein level will augment the efficacy of current BRCA1 screening protocols, especially in the absence of clinical data that can be used to discriminate deleterious BRCT missense mutations from benign polymorphisms.  相似文献   

11.
Amino acid substitutions in evolutionarily related proteins have been studied from a structural point of view. We consider here that an amino acid al in a protein p1 has been replaced by the amino acid a2 in the structurally similar protein p2 if, after superposition of the p1 and p2 structures, the a1 and a2 C alpha atoms are no more than 1.2 A apart. Thirty-two proteins, grouped in 11 classes, have been analysed by this method. This produced 2860 amino acid pairs (substitutions), which were analysed by multi-dimensional statistical methods. The main results are as follows: (1) according to the observed exchangeability of amino acid side-chains, only four groups (strong clusters) could be delineated; (i) Ile and Val, (ii) Leu and Met, (iii) Lys, Arg and Gln, and (iv) Tyr and Phe. The other residues could not be classified. (2) The matrix of distances between amino acids, or scoring matrix, determined from this study, is different from any other published matrix. (3) Except for the distance matrices based on the chemical properties of amino acid side-chains, which can be grouped together, all other published matrices are different from one another. (4) The distance matrix determined in this study seems to be very efficient for aligning distantly related protein sequences.  相似文献   

12.
The 1000 Genomes Project data provides a natural background dataset for amino acid germline mutations in humans. Since the direction of mutation is known, the amino acid exchange matrix generated from the observed nucleotide variants is asymmetric and the mutabilities of the different amino acids are very different. These differences predominantly reflect preferences for nucleotide mutations in the DNA (especially the high mutation rate of the CpG dinucleotide, which makes arginine mutability very much higher than other amino acids) rather than selection imposed by protein structure constraints, although there is evidence for the latter as well. The variants occur predominantly on the surface of proteins (82%), with a slight preference for sites which are more exposed and less well conserved than random. Mutations to functional residues occur about half as often as expected by chance. The disease-associated amino acid variant distributions in OMIM are radically different from those expected on the basis of the 1000 Genomes dataset. The disease-associated variants preferentially occur in more conserved sites, compared to 1000 Genomes mutations. Many of the amino acid exchange profiles appear to exhibit an anti-correlation, with common exchanges in one dataset being rare in the other. Disease-associated variants exhibit more extreme differences in amino acid size and hydrophobicity. More modelling of the mutational processes at the nucleotide level is needed, but these observations should contribute to an improved prediction of the effects of specific variants in humans.  相似文献   

13.
Lee TC  Lee AS  Li KB 《Amino acids》2008,35(3):615-626
Determining if missense mutations are deleterious is critical for the analysis of genes implicated in disease. However, the mutational effects of many missense mutations in databases like the Breast Cancer Information Core are unclassified. Several approaches have emerged recently to determine such mutational effects but none have utilized amino acid property indices. We modified a previously described phylogenetic approach by first classifying benign substitutions based on the assumption that missense mutations that are maintained in orthologs are unlikely to affect function. A consensus conservation score based on 16 amino acid properties was used to characterize the remaining substitutions. This approach was evaluated with experimentally verified T4 lysozyme missnese mutations and is shown to be able to sieve out putative biochemical and structurally important residues. The use of amino acid properties can enhance the prediction of biochemical and structurally important residues and thus also predict the significance of missense mutations.  相似文献   

14.
Helix-helix interactions play a central role in the folding and assembly of integral α-helical membrane proteins and are fundamentally dictated by the amino acid sequence of the TM domain. It is not surprising then that missense mutations that target these residues are often linked to disease. In this review, we focus on the molecular mechanisms through which missense mutations lead to aberrant folding and/or assembly of these proteins, and then discuss pharmacological approaches that may potentially mitigate or reverse the negative effects of these mutations. Improving our understanding of how missense mutations affect the interactions between TM α-helices will increase our capability to develop effective therapeutic approaches to counter the misassembly of these proteins and, ultimately, disease. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

15.
Genetic variations resulting in a change of amino acid sequence can have a dramatic effect on stability, hydrogen bond network, conformational dynamics, activity and many other physiologically important properties of proteins. The substitutions of only one residue in a protein sequence, so-called missense mutations, can be related to many pathological conditions and may influence susceptibility to disease and drug treatment. The plausible effects of missense mutations range from affecting the macromolecular stability to perturbing macromolecular interactions and cellular localization. Here we review the individual cases and genome-wide studies that illustrate the association between missense mutations and diseases. In addition, we emphasize that the molecular mechanisms of effects of mutations should be revealed in order to understand the disease origin. Finally, we report the current state-of-the-art methodologies that predict the effects of mutations on protein stability, the hydrogen bond network, pH dependence, conformational dynamics and protein function.  相似文献   

16.
Mutational experiments show how changes in the hydrophobic cores of proteins affect their stabilities. Here, we estimate these effects computationally, using four-body likelihood potentials obtained by simplicial neighborhood analysis of protein packing (SNAPP). In this procedure, the volume of a known protein structure is tiled with tetrahedra having the center of mass of one amino acid side-chain at each vertex. Log-likelihoods are computed for the 8855 possible tetrahedra with equivalent compositions from structural databases and amino acid frequencies. The sum of these four-body potentials for tetrahedra present in a given protein yields the SNAPP score. Mutations change this sum by changing the compositions of tetrahedra containing the mutated residue and their related potentials. Linear correlation coefficients between experimental mutational stability changes, Delta(DeltaG(unfold)), and those based on SNAPP scoring range from 0.70 to 0.94 for hydrophobic core mutations in five different proteins. Accurate predictions for the effects of hydrophobic core mutations can therefore be obtained by virtual mutagenesis, based on changes to the total SNAPP likelihood potential. Significantly, slopes of the relation between Delta(DeltaG(unfold)) and DeltaSNAPP for different proteins are statistically distinct, and we show that these protein-specific effects can be estimated using the average SNAPP score per residue, which is readily derived from the analysis itself. This result enhances the predictive value of statistical potentials and supports previous suggestions that "comparable" mutations in different proteins may lead to different Delta(DeltaG(unfold)) values because of differences in their flexibility and/or conformational entropy.  相似文献   

17.
Charge interactions between alpha-helical coiled-coil proteins have been postulated to determine the alignment of many filamentous proteins, such as myosin heavy-chain rod, paramyosin and alpha-keratin. Here we determined the sequence changes in nine mutations in the unc-15 paramyosin gene of Caenorhabditis elegans, including one nonsense, four missense, one deletion and three suppressor mutations. These mutation sites were located on a molecular model, constructed by optimizing charge interactions between paramyosin rods. Remarkably, single charge reversals (e.g., glutamic acid to lysine) were found that either disrupted or restored filament assembly in vivo. The positions of the mutations within the paramyosin molecule support the models of paramyosin assembly and further suggest that the C-terminal region containing a cluster of five mutations, and a site interacting with it, play a key role in assembly. One amino acid substitution in this C-terminal region, in which there is a "weak spot", led to a loss of reactivity with one monoclonal anti-paramyosin antibody. The results demonstrate how a single amino acid substitution can alter the assembly properties of alpha-helical molecules.  相似文献   

18.
Summary We report the isolation of LexA mutant proteins with impaired repressor function. These mutant proteins were obtained by transforming a LexA-deficient recA-lacZ indicator strain with a randomly mutagenized plasmid harbouring the lexA gene and subsequent selection on MacConkey-lactose indicator plates. A total of 24 different lexA(Def) missense mutations were identified. All except three mutant proteins are produced in near-normal amounts suggesting that they are fairly resistant to intracellular proteases. All lexA(Def) missense mutations are situated within the first 67 amino acids of the amino-terminal DNA binding domain. The properties of an intragenic deletion mutant suggest that the part of the amino-terminal domain important for DNA recognition or domain folding should extent at least to amino acids 69 or 70. A recent 2D-NMR study (Lamerichs et al. 1989) has identified three a helices in the DNA binding domain of LexA. The relative orientation of two of them (helices 2 and 3) is reminiscent of, but not identical to, the canonical helix-turn-helix motif suggesting nevertheless that helix 3 might be involved in DNA recognition. The distribution of the lexA(Def) missense mutations along the first 67 amino-terminal amino acids indeed shows some clustering within helix 3, since 8 out of the 24 different missense mutations are found in this helix. However one mutation in front of helix 1 and five mutations between amino acids 61 and 67 suggest that elements other than helices 2 and 3 may be important for DNA binding.  相似文献   

19.
MEN1 is a tumor suppressor gene that is responsible for multiple endocrine neoplasia type 1 (MEN1) and that encodes a 610-amino-acid protein, called menin. While the majority of germ line mutations identified in MEN1 patients are frameshift and nonsense mutations resulting in truncation of the menin protein, various missense mutations have been identified whose effects on menin activity are unclear. For this study, we analyzed a series of menin proteins with single amino acid alterations and found that all of the MEN1-causing missense mutations tested led to greatly diminished levels of the affected proteins in comparison with wild-type and benign polymorphic menin protein levels. We demonstrate here that the reduced levels of the mutant proteins are due to rapid degradation via the ubiquitin-proteasome pathway. Furthermore, the mutants, but not wild-type menin, interact both with the molecular chaperone Hsp70 and with the Hsp70-associated ubiquitin ligase CHIP, and the overexpression of CHIP promotes the ubiquitination of the menin mutants in vivo. These findings reveal that MEN1-causing missense mutations lead to a loss of function of menin due to enhanced proteolytic degradation, which may be a common mechanism for inactivating tumor suppressor gene products in familial cancer.  相似文献   

20.
Previously, we calculated a consensus amino acid sequence from 13 homologous fungal phytases. A synthetic gene was constructed and recombinantly expressed. Surprisingly, consensus phytase-1 was 15-26 degrees C more thermostable than all parent phytases used in its design [Lehmann et al. (2000)Protein Eng., 13, 49-57]. In the present study, inclusion of six further phytase sequences in the amino acid sequence alignment resulted in the replacement of 38 amino acid residues in either one or both of the new consensus phytases-10 and -11. Since consensus phytase-10, again, was 7.4 degrees C more thermostable than consensus phytase-1, the thermostability effects of most of the 38 amino acid substitutions were tested by site-directed mutagenesis. Both stabilizing and destabilizing mutations were identified, but all affected the stability of the enzyme by <3 degrees C. The combination of all stabilizing amino acid exchanges in a multiple mutant of consensus phytase-1 increased the unfolding temperature from 78.0 to 88.5 degrees C. Likewise, back-mutation of four destabilizing amino acids and introduction of an additional stabilizing amino acid in consensus phytase-10 further increased the unfolding temperature from 85.4 to 90.4 degrees C. The thermostabilization achieved is the result of a combination of slight improvements from multiple amino acid exchanges rather than being the effect of a single or of just a few dominating mutations that have been introduced by chance. The present findings support the general validity of the consensus concept for thermostability engineering of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号