首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of the arginine succinyltransferase pathway was examined in representative strains of Pseudomonas and related bacteria able to use arginine as the sole carbon and nitrogen source for growth. The arginine succinyltransferase pathway was induced in arginine-grown cells. The accumulation of succinylornithine following in vivo inhibition of succinylornithine transaminase activity by aminooxyacetic acid showed that this pathway is responsible for the dissimilation of the carbon skeleton of arginine. Catabolism of citrulline as a carbon source was restricted to relatively few of the organisms tested. In P. putida, P. cepacia and P. indigofera, ornithine was the main product of citrulline degradation. In most strains which possessed the arginine succinyltransferase pathway, the first step of ornithine utilization as a carbon source was the conversion of ornithine into succinylornithine through an ornithine succinyltransferase. However P. cepacia and P. putida used ornithine by a pathway which proceeded via proline as an intermediate and involved an ornithine cyclase activity.  相似文献   

2.
Nopaline, an abundant opine in plant cells transformed with nopaline-type Ti plasmids, is catabolized in Agrobacterium by three Ti-plasmid-coded steps via arginine and ornithine to proline. The last enzyme, ornithine cyclodeaminase (OCD), converts ornithine directly into proline with release of ammonia. We describe the DNA sequence of the ocd gene from Ti plasmid C58, antiserum against an OCD fusion protein overexpressed in Escherichia coli, induction and identification of the gene product in Agrobacterium and enzymatic properties of the protein. The DNA sequence suggests a soluble protein with a stretch of some homology with ornithine carbamoyltransferases from other bacteria. OCD activity is subject to substrate inhibition, is stimulated by NAD+ (presumably acting as a catalytic cofactor) and is regulated by L-arginine which has pronounced effects on the optima for pH and temperature and on the Km for ornithine. The regulation of OCD activity by L-arginine is discussed as part of the mechanisms which integrate the pathway of Ti-plasmid-coded opine utilization with general metabolism in Agrobacterium.  相似文献   

3.
Arginine metabolism in lactic streptococci.   总被引:35,自引:14,他引:21       下载免费PDF全文
Streptococcus lactis metabolizes arginine via the arginine deiminase pathway producing ornithine, ammonia, carbon dioxide, and ATP. In the four strains of S. lactis examined, the specific activities of arginine deiminase and ornithine transcarbamylase were 5- to 10-fold higher in galactose-grown cells compared with glucose- or lactose-grown cells. The addition of arginine increased the specific activities of these two enzymes with all growth sugars. The specific activity of the third enzyme involved in arginine metabolism (carbamate kinase) was not altered by the composition of the growth medium. In continuous cultures arginine deiminase was not induced, and arginine was not metabolized, until glucose limitation occurred. In batch cultures the metabolism of glucose and arginine was sequential, whereas galactose and arginine were metabolized concurrently, and the energy derived from arginine metabolism was efficiently coupled to growth. No arginine deiminase activity was detected in the nine Streptococcus cremoris strains examined, thus accounting for their inability to metabolize arginine. All nine strains of S. cremoris had specific activities of carbamate kinase similar to those found in S. lactis, but only five S. cremoris strains had ornithine transcarbamylase activity.  相似文献   

4.
Ornithine decarboxylase (ODC) catalyzes the first step in the polyamine biosynthetic pathway, a highly regulated pathway in which activity increases during rapid growth. Other enzymes also metabolize ornithine, and in hepatomas, rate of growth correlates with decreased activity of these other enzymes, which thus channels more ornithine to polyamine biosynthesis. Ornithine is produced from arginase cleavage of arginine, which also serves as the precursor for nitric oxide production. To study whether short-term coordination of ornithine and arginine metabolism exists in rat colon, ODC, ornithine aminotransferase (OAT), arginase, ornithine, arginine, and polyamine levels were measured after two stimuli (refeeding and/or deoxycholate exposure) known to synergistically induce ODC activity. Increased ODC activity was accompanied by increased putrescine levels, whereas OAT and arginase activity were reduced by either treatment, accompanied by an increase in both arginine and ornithine levels. These results indicate a rapid reciprocal change in ODC, OAT, and arginase activity in response to refeeding or deoxycholate. The accompanying increases in ornithine and arginine concentration are likely to contribute to increased flux through the polyamine and nitric oxide biosynthetic pathways in vivo.  相似文献   

5.
Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine.  相似文献   

6.
Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine.  相似文献   

7.
Thirty-two independent mutants were isolated which overcame the proline requirement of pro-3 mutations in Neurospora crassa. The mutations were not revertants, appeared to be allelic, were closely linked or allelic to arg-6, and in strains unable to degrade ornithine no longer suppressed the proline requirement. The suppressor mutations did not alter the levels of biosynthetic or catabolic enzymes, yet allowed accumulation of ornithine. Suppressed strains unable to degrade arginine still produced ornithine (as detected by growth) in arginine-supplemented medium. The results suggest that the suppressor mutants were impaired in the feedback inhibition of ornithine synthesis by arginine. The activity of the appropriate biosynthetic enzyme was less sensitive to inhibition by arginine. The potential usefulness of such mutations is discussed.  相似文献   

8.
Pseudomonas putida mutants impaired in the utilization of arginine are affected in either the arginine succinyltransferase pathway, the arginine oxidase route, or both. However, mutants affected in one of the pathways still grow on arginine as sole carbon source. Analysis of the products excreted by both wild-type and mutant strains suggests that arginine is mainly channelled by the oxidase route. Proline non-utilizing mutants are also affected in ornithine utilization, confirming the role of proline as an intermediate in ornithine catabolism. Mutants affected in ornithine cyclodeaminase activity still grow on proline and become unable to use ornithine. Both proline non-utilizing mutants and ornithine-cyclodeaminase-minus mutants are unable to use citrulline. These results, together with induction of ornithine cyclodeaminase when wild-type P. putida is grown on citrulline, indicate that utilization of citrulline as a carbon source proceeds via proline with ornithine as an intermediate. Thus in P. putida, the aerobic catabolism of arginine on the one hand and citrulline and ornithine on the other proceed by quite different metabolic segments.  相似文献   

9.
1. The activities of ornithine decarboxylase, S-adenosylmethionine decarboxylase and ornithine-2-oxoglutarate aminotransferase were studied during the first 24 h of conidial germination in Aspergillus nidulans. 2. Increases (over 100-fold) in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase occurred during the emergence of the germ-tube and before the doubling of DNA and this was followed by a sharp fall in the activities of both enzymes by 16h. 3. The increase in ornithine decarboxylase could be largely suppressed if 0.6 mM-putrescine was added to the growth medium. 4. Low concentrations of cycloheximide, which delayed germination by 2h, caused a corresponding delay in the changes in ornithine decarboxylase activity. 5. Ornithine-2-oxoglutarate aminotransferase activity increased steadily during the first 24h of germination. 6. Ornithine or arginine in the growth medium induced higher activity of ornithine-2-oxoglutarate aminotransferase, but did not affect ornithine decarboxylase activity. 7. The significance of these enzyme changes during germination is discussed.  相似文献   

10.
Ornithine cyclodeaminase activity in Rhizobium meliloti   总被引:1,自引:0,他引:1  
Abstract Deamination of L-ornithine to L-proline by ornithine cyclodeaminase is an unusual enzyme reaction that has been shown to occur in only a few bacteria. Rhizobium meliloti strains GR4, 2011 and 41 are able to use ornithine as the sole carbon and nitrogen source. The main pathway of ornithine utilization in strain GR4 depends on ornithine cyclodeaminase activity. In addition, this enzymatic activity has been found to be dependent on NAD+ and L-arginine similar to Agrobacterium ornithine cyclodeaminases. The ornithine cyclodeaminase activity is also expressed in R. meliloti strains 2011 and 41 growing with L-ornithine.  相似文献   

11.
Arginaseless Neurospora: Genetics, Physiology, and Polyamine Synthesis   总被引:25,自引:19,他引:6  
Four arginaseless mutants of Neurospora crassa have been isolated. All carry mutations which lie at a single locus, aga, on linkage group VIIR. A study of aga strains shows the arginase reaction to be the major, perhaps the only, route of arginine consumption in Neurospora other than protein synthesis. Ornithine-δ-transaminase, the second enzyme of the arginine catabolic pathway, is present and normally inducible by arginine in aga strains, and ornithine transcarbamylase, an enzyme of arginine synthesis, also has normal activity. Arginine inhibits the growth of aga strains. The inhibition can be reversed by spermidine, putrescine (1,4-diaminobutane), or ornithine. The results suggest that ornithine is the major source of the putrescine moiety of polyamines in Neurospora, and that putrescine is an essential growth factor for this organism. The inhibition of aga strains by arginine can be attributed to feedback inhibition of ornithine synthesis by arginine, combined with the complete lack of ornithine normally provided by the arginase reaction.  相似文献   

12.
Chlorella saccharophila can utilize the amino acids arginine, glutamate. ornithine and proline as sole sources of nitrogen for growth. By comparison C. autotrophica utilized only arginine and ornithine. Following osmotic shock of Chlorella autotrophica from 50 to 150% artificial seawater rapid synthesis of proline (the main osmoregulatory solute in this alga) occurred in cells grown on arginine or citrulline. However, little proline synthesis occurred in ornithine-grown cells. Distribution of radiolabelled carbon from [14C]-arginine assimilation following osmotic shock of C. autotrophica agrees with the following pathway of arginine utilization: arginine→citrulline→ornithine→glutamate semialdehyde→pyrroline-5-carboxylate→proline. These 4 steps are catalysed by arginine deiminase (EC 3.5.3.6), citrullinase (EC 3.5.1.20), ornithine transaminase (EC 2.6.1.13) and pyrroline-5-carboxylate reductase (EC 1.5.1.2), respectively. Of these 4 enzymes, only arginine deiminase and pyrroline-5-carboxylate reductase were detected in the crude extract of the 2 Chlorella species. Arginine deiminase did not require specific cations for optimal activity. The deimi-nase showed maximal activity at pH 8.0 and followed Michaelis-Menten kinetics with an apparent Km for L-arginine of 0.085 m M for the C. autotrophica enzyme and 0.097 m M for that of C. saccharophila. The activity of arginine deiminase was not influen-ced by growing C. saccharophila on arginine. Ornithine competitively inhibited arginine deiminase with an apparent K, of 2.4 m M for the C. autotrophica enzyme, and 3.8 m M for that of C. saccharophila . Arginine utilization by Chlorella is discussed in relation to that of other organisms.  相似文献   

13.
Plant tumors induced by Agrobacterium tumefaciens synthesize a group of substances (opines) which can serve as sole source of carbon and nitrogen for the bacteria. We investigate Ti-plasmid-coded genes and enzymes involved in catabolism of the opine N2-(1,3-dicarboxypropyl)-L-arginine (nopaline) with a novel approach: expression and mapping of protein-coding regions in Escherichia coli minicells, followed by identification of enzyme functions in the heterologous E. coli background. The results show that a specific part of the nopaline catabolism (Noc) region of Ti plasmid C58 is packed with closely spaced protein-coding regions which can be expressed into polypeptides of distinct sizes in E. coli. We identify and map three enzyme activities: nopaline oxidase, arginase and ornithine cyclodeaminase, an unusual protein converting ornithine directly into proline. Nopaline oxidase requires two different Noc-gene-encoded proteins for function and the latter two enzymes are new discoveries in the Noc region. These three enzyme activities together constitute a catabolic pathway leading from nopaline through arginine and ornithine to proline.  相似文献   

14.
We measured the metabolism of ornithine in Neurospora during the transition from minimal medium to arginine-supplemented medium. Within an hour after arginine supplementation, the amount of intracellular ornithine (95% of which had been stored in vesicles) dropped by 65%, even though the catabolism of arginine produces as much ornithine as had been produced on minimal medium. The arginine level in the cell rose 10-fold. Ornithine flux through the catabolic enzyme ornithine aminotransferase increased fivefold, but flux through the mitochondrial enzyme ornithine transcarbamylase (leading to arginine synthesis) was only 20% of the rate seen on minimal medium. During this transition to arginine catabolism, the enzymes of the arginine pathway operate as an ornithine cycle, but at a restricted rate. We suggest the hypothesis that high levels of arginine may inhibit the movement of ornithine into the vesicles and into the mitochondria.  相似文献   

15.
Growth of Escherichia coli K12 cultivated in minimal medium was strongly inhibited by 2 mM-cyanate. This inhibition could be specifically reversed by arginine. Citrulline (but not ornithine, N-alpha-acetylornithine or N-acetylglutamate) could also restore a normal growth rate. Since growth inhibition by cyanate was followed by an accumulation of ornithine within the cell it was concluded that cyanate specifically inhibits the formation of citrulline from ornithine. The effect of cyanate on the growth of defined strains was consistent with a specific inhibition of carbamoylphosphate synthase. A kinetic study of carbamoylphosphate synthase and ornithine carbamoyltransferase in vitro supported this conclusion. Since carbamoylphosphate is probably the only source of endogenous cyanate it is postulated that carbamoylphosphate synthase activity can be regulated by cyanate resulting from the dissociation of carbamoylphosphate in metabolic circumstances leading to its overproduction.  相似文献   

16.
Arginine catabolism by Treponema denticola.   总被引:14,自引:2,他引:12       下载免费PDF全文
Treponema denticola, an anaerobe commonly present in the human mouth, ferments various amino acids and glucose. Amino acid analyses indicated that substrate amounts of arginine were utilized by T. denticola growing in a complex, serum-containing medium. Cell suspensions metabolized L-arginine to citrulline, NH3, CO2, proline, and small amounts of ornithine. CO2, NH3, ornithine, and proline were produced from L-citrulline by cell suspensions. Determinations of radioactivity in products formed from L-[U-14C]ornithine indicated that cell suspensions converted this amino acid to proline. Furthermore, proline was excreted by cells growing in a complex, arginine-containing medium. Arginine iminohydrolase (deiminase) and ornithine carbamoyltransferase activities were detected in T. denticola cell extracts. Carbamoylphosphate dissimilation by extracts yielded adenosine triphosphate. The data indicate that T. denticola derives energy by dissimilating L-argine via the arginine iminohydrolase pathway. However, unlike some of the other bacteria that utilize this pathway, T. denticola converts to proline much of the ornithine derived from L-arginine.  相似文献   

17.
A mutant of Escherichia coli is described which is defective in the conversion of arginine to putrescine. The activity of the enzyme agmatine ureohydrolase is greatly reduced, whereas the activity of the other two enzymes of the pathway, the constitutive arginine decarboxylase and the inducible arginine decarboxylase, are within the normal range. The growth behavior of the mutant reflects the enzymatic block. It grows well in the absence of arginine, but only poorly in the presence of arginine. Under the former conditions, putrescine can be formed from ornithine as well as arginine, whereas under the latter conditions, because of feedback control, it can be formed only from arginine.  相似文献   

18.
Ornithine aminotransferase (OAT) is a crucial enzyme in the synthesis of citrulline and arginine from glutamine/glutamate and proline by enterocytes of the small intestine. However, a role for OAT in intestinal polyamine synthesis and cell growth is not known. All-transretinoic acid (RA), an active metabolite of vitamin A, regulates the activity of several metabolic enzymes related to OAT, including ornithine decarboxylase and arginase, which may influence the function of OAT through effects on substrate (ornithine) availability. The objective of the present study was to test the hypothesis that RA regulates OAT mRNA expression and enzymatic activity in intestinal epithelial cells. Caco-2 cells were cultured for 12-72 h in the presence of 0, 0.01 and 1 microM RA and then used for measurements of OAT mRNA levels and enzyme activity as well as ornithine and polyamines. Treatment with RA induced increases in OAT gene expression and enzymatic activity, which resulted in decreased intracellular concentrations of ornithine and polyamines (putrescine, spermidine and spermine) in a dose-dependent manner. These changes occurred concomitantly with a decrease in the total number of cells, and the increase in OAT activity was due to increased OAT mRNA expression. In cells treated with 1 microM RA, addition of 10 microM putrescine to culture medium restored both cellular levels of polyamines and cell numbers to the values for the control group (without addition of RA). We conclude that exposure of Caco-2 cells to RA induces OAT expression for increasing ornithine catabolism. This leads to a reduced availability of intracellular ornithine for polyamine synthesis, thereby decreasing cell proliferation. These novel findings indicate a functional role for OAT in regulating intestinal polyamine synthesis and growth.  相似文献   

19.
Specific activities of arginase and ornithine aminotransferase, inducible enzymes of arginine catabolism in Bacillus subtilis 168, were examined in cells grown with various carbon and nitrogen sources. Levels of these enzymes were similar in arginine-induced cultures whether glucose or citrate was the carbon source (in contrast to histidase), suggesting that carbon source catabolite repression has only limited effect. In media with combinations of nitrogen sources, glutamine strongly repressed induction of these enzymes by proline or arginine. Ammonium, however, only repressed induction by proline and had no effect on induction by arginine. These effects correlate with generation times in media containing these substances as sole nitrogen sources: growth rates decreased in the order glutamine-arginine-ammonium-proline. Similar phenomena were observed when glutamine or ammonium were added to arginine- or proline-grown cultures, or when arginine or proline were added to glutamine- or ammonium-grown cultures. In the latter cases, an additional feature was apparent, namely a surprisingly long transition between steady-state enzyme levels. The results are compared with those for other bacteria and for eucaryotic microorganisms.  相似文献   

20.
During growth on minimal medium, cells of Neurospora contain three pools of ornithine. Over 95% of the ornithine is in a metabolically inactive pool in vesicles, about 1% is in the cytosol, and about 3% is in the mitochondria. By using a ureaseless strain, we measured the rapid flux of ornithine across the membrane boundaries of these pools. High levels of ornithine and the catabolic enzyme ornithine aminotransferase coexist during growth on minimal medium but, due to the compartmentation of the ornithine, only 11% was catabolized. Most of the ornithine was used for the synthesis of arginine. Upon the addition of arginine to the medium, ornithine was produced catabolically via the enzyme arginasn early enzyme of ornithine synthesis. The biosynthesis of arginine itself, from ornithine and carbamyl phosphate, was halted after about three generations of growth on arginine via the repression of carbamyl phosphate synthetase A. The catabolism of arginine produced ornithine at a greater rate than it had been produced biosynthetically, but this ornithine was not stored; rather it was catabolized in turn to yield intermediates of the proline pathway. Thus, compartmentation, feedback inhibition, and genetic repression all play a role to minimize the simultaneous operation of anabolic and catabolic pathways for ornithine and arginine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号