首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The induction of high-rate protein secretion entails increased biogenesis of secretory apparatus organelles. We examined the biogenesis of the secretory apparatus in the B cell line CH12 because it can be induced in vitro to secrete immunoglobulin (Ig). Upon stimulation with lipopolysaccharide (LPS), CH12 cells increased secretion of IgM 12-fold. This induced secretion was accompanied by preferential expansion of the ER and the Golgi complex. Three parameters of the rough ER changed: its area and volume increased 3.3- and 3.7-fold, respectively, and the density of membrane-bound ribosomes increased 3.5-fold. Similarly, the area of the Golgi stack increased 3.3-fold, and its volume increased 4.1-fold. These changes provide sufficient biosynthetic capacity to account for the increased secretory activity of CH12. Despite the large increase in IgM synthesis, and because of the expansion of the ER, the concentration of IgM within the ER changed less than twofold during the differentiation process. During the amplification of the rough ER, the expression of resident proteins changed according to one of two patterns. The majority (75%) of rough microsomal (RM) proteins increased in proportion to the increase in rough ER size. Included in this group were both lumenal proteins such as Ig binding protein (BiP), and membrane proteins such as ribophorins I and II. In addition, the expression of a minority (approximately 9%) of RM polypeptides increased preferentially, such that their abundance within the RM of secreting CH12 cells was increased. Thus, the expansion of ER during CH12 differentiation involves preferential increases in the abundance of a few resident proteins, superimposed upon proportional increases in most ER proteins.  相似文献   

3.
4.
The methylation state of Intracisternal A Particle (IAP) genes in mouse teratocarcinoma cell lines has been investigated as an approach to study the regulation of the expression of these particles. Treatment of the cells with the methylation inhibitor 5-azacytidine induces the production of the particles in all the cells; the induction is particularly striking in an embryonal carcinoma cell line which is normally devoid of IAPs. The induction is accompanied by decrease in DNA methylation as demonstrated by using the methylation sensitive isoschizomer enzymes MspI and HpaII. Hypomethylation of the IAP genes correlates with accumulation of IAP, specific polyadenylated RNA reinforcing the hypothesis that methylation plays an important role in the control of IAP expression.  相似文献   

5.
The methylation state of Intracisternal A Particle (IAP) genes in mouse teratocarcinoma cell lines has been investigated as an approach to study the regulation of the expression of these particles. Treatment of the cells with the methylation inhibitor 5-azacytidine induces the production of the particles in all the cells; the induction is particularly striking in an embryonal carcinoma cell line which is normally devoid of IAPs. The induction is accompanied by decrease in DNA methylation as demonstrated by using the methylation sensitive isoschizomer enzymes MspI and HpaII. Hypomethylation of the IAP genes correlates with accumulation of IAP, specific polyadenylated RNA reinforcing the hypothesis that methylation plays an important role in the control of IAP expression.  相似文献   

6.
7.
8.
9.
10.
Despite the potential of the inhibitor of apoptosis proteins (IAPs) to block cytochrome c-dependent caspase activation, the critical function of IAPs in regulating mammalian apoptosis remains unclear. We report that the ability of endogenous IAPs to effectively regulate caspase activation depends on the differentiation state of the cell. Despite being expressed at equivalent levels, endogenous IAPs afforded no protection against cytochrome c-induced apoptosis in naive pheochromocytoma (PC12) cells, but were remarkably effective in doing so in neuronally differentiated cells. Neuronal differentiation was also accompanied with a marked reduction in Apaf-1, resulting in a significant decrease in apoptosome activity. Importantly, this decrease in Apaf-1 protein was directly linked to the increased ability of IAPs to stringently regulate apoptosis in neuronally differentiated PC12 and primary cells. These data illustrate specifically how the apoptotic pathway acquires increased regulation with cellular differentiation, and are the first to show that IAP function and apoptosome activity are coupled in cells.  相似文献   

11.
Smac/Diablo and HtrA2/Omi are inhibitors of apoptosis (IAP)-binding proteins released from the mitochondria of human cells during apoptosis and regulate apoptosis by liberating caspases from IAP inhibition. Here we describe the identification of a proteolytically processed isoform of the polypeptide chain-releasing factor GSPT1/eRF3 protein, which functions in translation, as a new IAP-binding protein. In common with other IAP-binding proteins, the processed GSPT1 protein harbors a conserved N-terminal IAP-binding motif (AKPF). Additionally, processed GSPT1 interacts biochemically with IAPs and could promote caspase activation, IAP ubiquitination and apoptosis. The IAP-binding motif of the processed GSPT1 is absolutely required for these activities. Our findings are consistent with a model whereby processing of GSPT1 into the IAP-binding isoform could potentiate apoptosis by liberating caspases from IAP inhibition, or target IAPs and the processed GSPT1 for proteasome-mediated degradation.  相似文献   

12.
To assess the ability of immunoglobulin production in vivo, we enumerated the immunoglobulin secreting cells in the peripheral blood of patients with an IgA deficiency and of those with hyper-IgAemia. All seven patients with primary IgA deficiency and two of the three patients with secondary IgA deficiency had low numbers of IgA secreting cells. In all five patients with hyper-IgA the number of IgA secreting cells was increased. Our results suggest that measurement of immunoglobulin secreting cells in PBMCs is useful in the assessment of ability of immunoglobulin production in vivo.Abbreviations PBMCs peripheral blood mononuclear cells - MEM minimum essential medium - PFC plaque forming cells - VH immunoglobulin heavy chain variable region - CH immunoglobulin heavy chain constant region  相似文献   

13.
The 7,095-nucleotide sequence of a mouse genomic intracisternal A-particle (IAP) element, MIA14, is reported. MIA14 is known to be colinear with IAP 35S RNA and to contain functional long terminal repeats. Its internal genetic organization was determined by comparisons with a homologous Syrian hamster element and the related retroviruses simian retrovirus 1 (simian type D) and Rous sarcoma virus (avian type C). MIA14 contains a gag-protease open reading frame of 827 codons and a pol region of 867 codons entered by a frame shift of -1. The env region of 1,100 base pairs has multiple stop codons in all reading frames, consistent with the failure thus far to detect IAP-related glycosylated envelope components. RNA transcribed in vitro from a cDNA clone containing a closely homologous gag-protease open reading frame was translated in a cell-free system. The main product was a 73-kilodalton polypeptide immunoprecipitable with antiserum against the authentic IAP gag-related structural protein p73. Rather than ending at the gag-protease boundary, p73 appears to contain 7 to 8 kilodaltons of peptide encoded by the protease domain, a peculiarity possibly related to the observed impairment of normal protein processing in IAPs. The N-terminal 217 codons of gag are unique to murine IAPs and may have been contributed by recombination with a cellular gene. The mouse-specific region of gag encodes a hydrophobic signal peptide with an atypical cleavage site. Delayed cleavage of this peptide could result in anchoring of newly synthesized p73 to the endoplasmic reticulum membrane and restriction of particle assembly to this site.  相似文献   

14.
15.
Retrotransposition of a mouse IAP sequence tagged with an indicator gene.   总被引:22,自引:0,他引:22  
O Heidmann  T Heidmann 《Cell》1991,64(1):159-170
  相似文献   

16.
Intracisternal A-type particles (IAP) are defective endogenous retroviruses that accumulate in the endoplasmic reticulum (ER) of rodent cells. The enveloped particles are produced by assembly and budding of IAP Gag polyproteins at the ER membrane. In this study, we analyzed the specific ER transport of the Gag polyprotein of the IAP element MIA14. To this end, we performed in vitro translation of Gag in the presence of microsomal membranes or synthetic proteoliposomes followed by membrane sedimentation or flotation. ER binding of IAP Gag occurred mostly cotranslationally, and Gag polyproteins interacted specifically with proteoliposomes containing only signal recognition particle (SRP) receptor and the Sec61p complex, which form the minimal ER translocation apparatus. The direct participation of SRP in ER targeting of IAP Gag was demonstrated in cross-linking and immunoprecipitation experiments. The IAP polyprotein was not translocated into the ER; it was found to be tightly associated with the cytoplasmic side of the ER membrane but did not behave as an integral membrane protein. Substituting the functional signal peptide of preprolactin for the hydrophobic sequence at the N terminus of IAP Gag also did not result in translocation of the chimeric protein into the ER lumen, and grafting the IAP hydrophobic sequence onto preprolactin failed to yield luminal transport as well. These results suggest that the N-terminal hydrophobic region of the IAP Gag polyprotein functions as a transport signal which mediates SRP-dependent ER targeting, but polyprotein translocation or integration into the membrane is prevented by the signal sequence itself and by additional regions of Gag.  相似文献   

17.
18.
19.
Freeze-fracture electron microscopy was used to investigate intramembranous particle (IMP) densities and particle distributions in the plasma membrane and tonoplast of the cells of secreting and nonsecreting leaves of Avicennia germinans (L.) Steam. Intramembranous particle densities of the protoplasmic (P) and exoplasmic (E) face of the plasma membrane and tonoplast were significantly higher in hypodermal cells of secreting leaves than of nonsecreting leaves. In contrast, no significant differences in the frequency of intramembranous particles were found in any membrane faces of secreting or nonsecreting mesophyll cells. However, particle densities were higher in the plasma membrane and tonoplast of the mesophyll cells, compared to the hypodermal cells, with the exception of the P-face of hypodermal plasma membranes of secreting tissue, which had the highest particle density measured. Particle distributions were dispersed and no discernible patterns such as paracrystalline arrays or other multi-IMP structures were observed. Results support the hypothesis that secretion is coupled to changes in membrane ultrastructure, and the possibility that salt secretion is an active process driven by integral membrane proteins such as the H+/ATPase. Additionally, the hypodermal cells of the leaf may function as storage reservoirs for salt as well as water, suggesting a regulatory role in salt secretion.  相似文献   

20.
Reaper (RPR), HID, and GRIM activate apoptosis in cells programmed to die during Drosophila development. We have previously shown that transient overexpression of RPR in the lepidopteran SF-21 cell line induces apoptosis and that members of the inhibitor of apoptosis (IAP) family of antiapoptotic proteins can inhibit RPR-induced apoptosis and physically interact with RPR through their BIR motifs (D. Vucic, W. J. Kaiser, A. J. Harvey, and L. K. Miller, Proc. Natl. Acad. Sci. USA 94:10183–10188, 1997). In this study, we found that transient overexpression of HID and GRIM also induced apoptosis in the SF-21 cell line. Baculovirus and Drosophila IAPs blocked HID- and GRIM-induced apoptosis and also physically interacted with them through the BIR motifs of the IAPs. The region of sequence similarity shared by RPR, HID, and GRIM, the N-terminal 14 amino acids of each protein, was required for the induction of apoptosis by HID and its binding to IAPs. When stably overexpressed by fusion to an unrelated, nonapoptotic polypeptide, the N-terminal 37 amino acids of HID and GRIM were sufficient to induce apoptosis and confer IAP binding activity. However, GRIM was more complex than HID since the C-terminal 124 amino acids of GRIM retained apoptosis-inducing and IAP binding activity, suggesting the presence of two independent apoptotic motifs within GRIM. Coexpression of IAPs with HID stabilized HID levels and resulted in the accumulation of HID in punctate perinuclear locations which coincided with IAP localization. The physical interaction of IAPs with RPR, HID, and GRIM provides a common molecular mechanism for IAP inhibition of these Drosophila proapoptotic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号