首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resonance Raman spectra of the Pr state of the N-terminal 65-kDa fragment of plant phytochrome phyA have been measured and analyzed in terms of the configuration and conformation of the tetrapyrroles methine bridges. Spectra were obtained from phyA adducts reconstituted with the natural chromophore phytochromobilin as well as phycocyanobilin and its isotopomers labeled at the terminal methine bridges through (13)C/(12)C and D/H substitution. Upon comparing the resonance Raman spectra of the various phyA adducts, it was possible to identify the bands that originate from normal modes dominated by the stretching coordinates of the terminal methine bridges A-B and C-D. Quantum chemical calculations of the isolated tetrapyrroles reveal that these modes are sensitive indicators for the methine bridge configuration and conformation. For all phyA adducts, the experimental spectra of Pr including this marker band region are well reproduced by the calculated spectra obtained for the ZZZasa configuration. In contrast, there are substantial discrepancies between the experimental spectra and the spectra calculated for the ZZZssa configuration, which has been previously shown to be the chromophore geometry in the Pr state of the bacterial, biliverdin-binding phytochrome from Deinococcus radiodurans (Wagner, J. R., J. S. Brunzelle, K. T. Forest, R. D. Vierstra. 2005. Nature. 438:325-331). The results of this work, therefore, suggest that plant and bacterial (biliverdin-binding) phytochromes exhibit different structures in the parent state although the mechanism of the photoinduced reaction cycle may be quite similar.  相似文献   

2.
Zhao KH  Wu D  Zhang L  Zhou M  Böhm S  Bubenzer C  Scheer H 《The FEBS journal》2006,273(6):1262-1274
Covalent attachment of phycocyanobilin (PCB) to the alpha-subunit of C-phycocyanin, CpcA, is catalysed by the heterodimeric PCB : CpcA lyase, CpcE/F [Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA & Glazer AN (1992) Proc Natl Acad Sci USA89, 7017-7021]. CpcE and CpcF of the cyanobacterium, Mastigocladus laminosus PCC 7603, form a 1 : 1 complex. Lyase-mutants were constructed to probe functional domains. When in CpcE (276 residues) the N terminus was truncated beyond the R33YYAAWWL motif, or the C terminus beyond amino acid 237, the enzyme became inactive. Activity decreases to 20% when C-terminal truncations went beyond L275, which is a key residue: the K(m) of CpcE(L275D) and (L276D) increased by 61% and 700%, k(cat)/K(m) decreased 3- and 83-fold, respectively. The enzyme also lost activity when in CpcF (213 residues) the 20 N-terminal amino acids were truncated; truncation of 53 C-terminal amino acids inhibited complex formation with CpcE, possibly due to misfolding. According to chemical modifications, one accessible arginine and one accessible tryptophan are essential for CpcE activity, and one carboxylate for CpcF. Both subunits bind PCB, as assayed by Ni2+ affinity chromatography, SDS/PAGE and Zn2+-induced fluorescence. The bound PCB could be transferred to CpcA to yield alpha-CPC. The PCB transfer capacity correlates with the activity of the lyase, indicating that PCB bound to CpcE/F is an intermediate of the enzymatic reaction. A catalytic mechanism is proposed, in which a CpcE/F complex binds PCB and adjusts via a salt bridge the conformation of PCB, which is then transferred to CpcA.  相似文献   

3.
Halorhodopsin (HR), the light-driven chloride transport pigment of Halobacterium halobium, was bleached and reconstituted with retinal analogues with the pi electron system interrupted at different locations (dihydroretinals). The absorption maxima of the artificial pigments formed with the dihydroretinals are found to be very similar to those of the corresponding pigments formed by reconstitution of bacteriorhodopsin (BR) and sensory rhodopsin (SR). This strongly suggests that the distribution of charges around the retinal is similar in all three bacterial rhodopsins. Comparison of the primary, and proposed secondary, structures for HR and BR reveal conserved asparagine (asp) and arginine (arg) residues, which are likely candidates for the ionizable amino acids that interact with the retinal. In a second set of experiments absorption shifts due to the binding of anions to Sites I and II in HR, reconstituted with different retinal analogues, were used to estimate the locations of these binding sites relative to the retinal. Site I is localized near the Schiff base, and Site II near the ionone ring. On the basis of these results a structural model for HR is proposed, which accounts for the spectroscopic properties of HR in terms of the three buried arg residues and two of the buried asp residues in the protein.  相似文献   

4.
Storf M  Parbel A  Meyer M  Strohmann B  Scheer H  Deng MG  Zheng M  Zhou M  Zhao KH 《Biochemistry》2001,40(41):12444-12456
PecE and PecF, the products of two phycoerythrocyanin lyase genes (pecE and pecF) of Mastigocladus laminosus (Fischerella), catalyze two reactions: (1) the regiospecific addition of phycocyanobilin (PCB) to Cys-alpha 84 of the phycoerythrocyanin alpha-subunit (PecA), and (2) the Delta 4-->Delta 2 isomerization of the PCB to the phycoviolobilin (PVB)-chromophore [Zhao et al. (2000) FEBS Lett. 469, 9-13]. The alpha-apoprotein (PecA) as well PecE and PecF were overexpressed from two strains of M. laminosus, with and without His-tags. The products of the spontaneous addition of PCB to PecA, and that of the reaction catalyzed by PecE/F, were characterized by their photochemistry and by absorption, fluorescence, circular dichroism of the four states obtained by irradiation with light (15-Z/E isomers of the chromophore) and/or modification of Cys-alpha 98/99 with thiol-directed reagents. The spontaneous addition leads to a 3(1)-Cys-PCB adduct, which is characteristic of allophycocyanins and phycocyanins, while the addition catalyzed by PecE and PecF leads to a 3(1)-Cys-PVB adduct which after purification was identical to alpha-PEC. The specificity and kinetics of the chromophore additions were investigated with respect to the structure of the bilin substrate: The 3-ethylidene-bilins, viz., PCB, its 18-vinyl analogue phytochromobilin, phycoerythrobilin and its dimethylester, react spontaneously to yield the conventional addition products (3-H, 3(1)-Cys), while the 3-vinyl-substituted bilins, viz., bilirubin and biliverdin, were inactive. Only phycocyanobilin and phytochromobilin are substrates to the addition-isomerization reaction catalyzed by PecE/F. The slow spontaneous addition of phycoerythrobilin is not influenced, and there is in particular no catalyzed isomerization to urobilin.  相似文献   

5.
Spinae are attached to protease-sensitive structural proteins in the external surface of the outer membrane. Agents and (or) treatments affecting ionic, hydrophobic, or hydorgen bonds are ineffective in releasing spinae from bacteria. As judged by thin-sectioning and freeze-fracturing techniques, the outer membrane is not modified at the attachment site to a detectable extent, and the other surface layers are not involved. The attachment of spinae is thus differentiated from that of flagella.  相似文献   

6.
Biliproteins are post-translationally modified by chromophore addition. In phycoerythrocyanin, the heterodimeric lyase PecE/F covalently attaches phycocyanobilin (PCB) to cysteine-alpha84 of the apoprotein PecA, with concomitant isomerization to phycoviolobilin. We found that: (a) PecA adds autocatalytically PCB, yielding a low absorbance, low fluorescence PCB.PecA adduct, termed P645 according to its absorption maximum; (b) In the presence of PecE, a high absorbance, high fluorescence PCB.PecA adduct is formed, termed P641; (c) PecE is capable of transforming P645 to P641; (d) When in stop-flow experiments, PecA and PecE were preincubated before chromophore addition, a red-shifted intermediate (P650, tau=32 ms) was observed followed by a second, which was blue-shifted (P605, tau=0.5 s), and finally a third (P638, tau=14 s) that yielded the adduct (P641, tau=20 min); (e) The reaction was slower, and P605 was missing, if PecA and PecE were not preincubated; (f) Gel filtration gave no evidence of a stable complex between PecA and PecE; however, complex formation is induced by adding PCB; and (g) A red-shifted intermediate was also formed, but more slowly, with phycoerythrobilin, and denaturation showed that this is not yet covalently bound. We conclude, therefore, that PecA and PecE form a weak complex that is stabilized by PCB, that the first reaction step involves a conformational change and/or protonation of PCB, and that PecE has a chaperone-like function on the chromoprotein.  相似文献   

7.
Ion selectivity of gram-negative bacterial porins.   总被引:28,自引:15,他引:28       下载免费PDF全文
Twelve different porins from the gram-negative bacteria Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Yersinia pestis were reconstituted into lipid bilayer membranes. Most of the porins, except outer membrane protein P, formed large, water-filled, ion-permeable channels with a single-channel conductance between 1.5 and 6 nS in 1 M KCl. The ions used for probing the pore structure had the same relative mobilities while moving through the porin pore as they did while moving in free solution. Thus the single-channel conductances of the individual porins could be used to estimate the effective channel diameters of these porins, yielding values ranging from 1.0 to 2.0 nm. Zero-current potential measurements in the presence of salt gradients across lipid bilayer membranes containing individual porins gave results that were consistent with the conclusions drawn from the single-channel experiments. For all porins except protein P, the channels exhibited a greater cation selectivity for less mobile anions and a greater anion selectivity for less mobile cations, which again indicated that the ions were moving inside the pores in a fashion similar to their movement in the aqueous phase. Three porins, PhoE and NmpC of E. coli and protein P of P. aeruginosa, formed anion-selective pores. PhoE and NmpC were only weakly anion selective, and their selectivity was dependent on the mobility of the ions. In contrast, cations were unable to enter the selectivity filter of the protein P channel. This resulted in a high anion selectivity for all salts tested in this study. The other porins examined, including all of the known constitutive porins of the four gram-negative bacteria studied, were cation selective with a 3- to 40-fold preference for K+ ions over Cl- ions.  相似文献   

8.
While chromophore attachment to alpha-subunits of cyanobacterial biliproteins has been studied in some detail, little is known about this process in beta-subunits. The ones of phycoerythrocyanin and C-phycocyanin each carry two phycocyanobilin (PCB) chromophores covalently attached to cysteins beta84 and beta155. The differential nonenzymatic reconstitution of PCB to the apoproteins, PecA, PecB, CpcA and CpcB, as well as to mutant proteins of the beta-subunits lacking either one of the two binding cysteins, was studied using overexpression of the respective genes. PCB adds selectively to Cys-84 of CpcA, CpcB, PecA, and PecB, but the bound chromophore has a nonnative configuration, and in the case of CpcA, is partly oxidized to mesobiliverdin (MBV). The oxidation is independent of thiols but can be suppressed by ascorbate. The addition to Cys-beta84 is suppressed in the presence of detergents like Triton X-100, in favor of an addition to Cys-beta155 yielding the correctly bound chromophore. Triton X-100 also inhibits oxidation of the chromophore during addition to CpcA. The effect of Triton X-100 was studied on the isolated components of the reconstitution system. Absorption, fluorescence and circular dichroism spectra indicate a major conformational change of the chromophore upon addition of the detergent, which probably controls the site selectivity of the addition reaction, and inhibits the oxidation of PCB to MBV.  相似文献   

9.
Assembly of holophytochrome in the plant cell requires covalent attachment of the linear tetrapyrrole chromophore precursor, phytochromobilin, to a unique cysteine in the nascent apoprotein. In this investigation we compare chromophore analogs with the natural chromophore precursor for their ability to attach covalently to recombinant oat apophytochrome and to form photoactive holoproteins. Ethylidene-containing analogs readily form covalent adducts with apophytochrome, whereas chromophores lacking this double bond are poor substrates for attachment. Kinetic measurements establish that although the chromophore binding site on apophytochrome is best tailored to phytochromobilin, apophytochrome will accommodate the two analogs with modified D-rings, phycocyanobilin and phycoerythrobilin. The phycocyanobilin-apophytochrome adduct is photoactive and undergoes a light-induced protein conformational change similar to the native holoprotein. By contrast, the phycoerythrobilin adduct is locked into a photochemically inactive protein conformation that is similar to the red light-absorbing Pr form of phytochrome. These results support the hypothesis that the photoconversion from Pr to Pfr, the far red light- absorbing form of phytochrome, involves the photoisomerization of the C15 double bond. Knowledge gained from these studies provides impetus for rational design of chromophore analogs whose insertion into apophytochrome should elicit profound changes in light-mediated plant growth and development.  相似文献   

10.
By co-expression of heme oxygenase and various bilin reductase(s) in a single operon in conjunction with apophytochrome using two compatible plasmids, we developed a system to produce phytochromes with various chromophores in Escherichia coli. Through the selection of different bilin reductases, apophytochromes were assembled with phytochromobilin, phycocyanobilin, and phycoerythrobilin. The blue-shifted difference spectra of truncated phytochromes were observed with a phycocyanobilin chromophore compared to a phytochromobilin chromophore. When the phycoerythrobilin biosynthetic enzymes were co-expressed, E. coli cells accumulated orange-fluorescent phytochrome. The metabolic engineering of bacteria for the production of various bilins for assembly into phytochromes will facilitate the molecular analysis of photoreceptors.  相似文献   

11.
12.
Chromophore equilibria in bacteriorhodopsin.   总被引:6,自引:0,他引:6       下载免费PDF全文
An investigation of the dark equilibria between different chromophores of bacteriorhodopsin (BR) and studies of the kinetics of their interconversion and photochemical activity have led to the following conclusions. (a) A component of the 605-nm chromophore of BR decays in the millisecond range and is likely to be identical to the intermediate O of the photochemical cycle of BR and is assumed to be formed from the purple complex (PC) by the binding of one proton to BR. (b) An acidic form the PC, PCaL-, arises from the 605-nm chromophore by selective binding of anions L- (F- greater than Cl- greater than Br- greater than I- greater than Cl04-) to BR. (c) The isomeric equilibrium between 13-cis and all-trans retinal is approximately 0.15/0.85 in PCaCl-, 0.3/0.7 in the 605-nm chromophore as compared to 0.5/0.5 in the PC. (d) The 500-nm chromophore is formed from the PC by release of nearly one proton from BR. (e) The pH range in which the PC exists is reduced in a high-temperature structure of the purple membrane as compared to its low temperature structure. A model for the chromophore structure is proposed as a hypothesis, which allows a comprehensive interpretation of the results. In this model the absorption spectrum of the retinylidene lysine Schiff base is modulated by its protonation state and the interaction with an anionic group.  相似文献   

13.
Phytochrome is a key photoregulation pigment in plants which determines the strategy of their development throughout their life cycle. The major achievement in the recent investigations of the pigment is the discovery of its structural and functional heterogeneity: existence of a family of phytochromes (phyA-phyE) differing by the apoprotein was demonstrated. We approach this problem by investigating the chromophore component of the pigment with the use of the developed method of in vivo low-temperature fluorescence spectroscopy of phytochrome. In etiolated plants, phytochrome fluorescence was detected and attributed to its red-light absorbing form (Pr) and the first photoproduct (lumi-R), and a scheme of the photoreaction in phytochrome, a distinction of which is the activation barrier in the excited state, was put forward. It was found that the spectroscopic and photochemical characteristics of Pr depend on the plant species and phytochrome mutants and overexpressors used, on localization of the pigment in organs and tissues, plant age, effect of preillumination and other physiological factors. This variability of the parameters was interpreted as the existence of at least two phenomenological Pr populations, which differ by their spectroscopic characteristics and activation parameters of the Pr --> lumi-R photoreaction (in particular, by the extent of the Pr --> lumi-R photoconversion at low temperatures, gamma1): the longer-wavelength major and variable by its content in plant tissues Pr' with gamma1 = 0.5 and the shorter-wavelength minor relatively constant Pr" with gamma1 < or = 0.05. The analysis of the phytochrome mutants and overexpressors allows a conclusion that phytochrome A (phyA), which dominates in etiolated seedlings, is presented by two isoforms attributed to Pr' and Pr" (phyA' and phyA", respectively). Phytochrome B (phyB) accounts for less than 10% of the total phytochrome fluorescence and belongs to the Pr" type. It is also characterized by the relatively low extent of the Pr photoconversion into the far-red-light absorbing physiologically active phytochrome form, Pfr. Fluorescence of the minor phytochromes (phyC-phyE) is negligible. The recently discovered phytochrome of the cyanobacterium Synechocystis also belongs to the phenomenological Pr" type. PhyA' is a light-labile and soluble fraction, while phyA" is a relatively light-stable and, possibly, membrane (protein)-associated. Experiments with transgenic tobacco plants overexpressing full-length and C- and N-terminally truncated oat phytochrome A suggest that phyA' and phyA" might differ by the post-translational modification of the small N-terminal segment (amino acid residues 7-69) of the pigment. PhyA' is likely to be active in the de-etiolation processes while phyA" together with phyB, in green plants as revealed by the experiments on transgenic potato plants and phytochrome mutants of Arabidopsis and pea with altered levels of phytochromes A and B and modified phenotypes. And finally, within phyA', there are three subpopulations which are, possibly, different conformers of the chromophore. Thus, there is a hierarchical system of phytochromes which include: (i) different phytochromes; (ii) their post-translationally modified states and (iii) conformers within one molecular type. Its existence might be the rationale for the multiplicity of the photoregulation reactions in plants mediated by phytochrome.  相似文献   

14.
The gene alr0617, from the cyanobacterium Anabaena sp. PCC7120, which is homologous to cpeS from Gloeobacter violaceus PCC 7421, Fremyella diplosiphon (Calothrix PCC7601), and Synechococcus sp. WH8102, and to cpcS from Synechococcus sp. PCC7002, was overexpressed in Escherichia coli. CpeS acts as a phycocyanobilin: Cys-beta84-phycobiliprotein lyase that can attach, in vitro and in vivo, phycocyanobilin (PCB) to cysteine-beta84 of the apo-beta-subunits of C-phycocyanin (CpcB) and phycoerythrocyanin (PecB). We found the following: (a) In vitro, CpeS attaches PCB to native CpcB and PecB, and to their C155I-mutants, but not to the C84S mutants. Under optimal conditions (150 mm NaCl and 500 mm potassium phosphate, 37 degrees C, and pH 7.5), no cofactors are required, and the lyase had a Km(PCB) = 2.7 and 2.3 microm, and a kcat = 1.7 x 10(-5) and 1.1 x 10(-5) s(-1) for PCB attachment to CpcB (C155I) and PecB (C155I), respectively; (b) Reconstitution products had absorption maxima at 619 and 602 nm and fluorescence emission maxima at 643 and 629 nm, respectively; and (c) PCB-CpcB(C155I) and PCB-PecB(C155I), with the same absorption and fluorescence maxima, were also biosynthesized heterologously in vivo, when cpeS was introduced into E. coli with cpcB(C155I) or pecB(C155I), respectively, together with genes ho1 (encoding heme oxygenase) and pcyA (encoding PCB:ferredoxin oxidoreductase), thereby further proving the lyase function of CpeS.  相似文献   

15.
Ultrastructure of rumen bacterial attachment to forage cell walls.   总被引:2,自引:18,他引:2       下载免费PDF全文
The degradation of forage cell walls by rumen bacteria was investigated with critical-point drying/scanning electron microscopy and ruthenium red staining/transmission electron microscopy. Differences were observed in the manner of attachment of different morphological types of rumen bacteria to plant cell walls during degradation. Cocci, constituting about 22% of the attached bacteria, appeared to be attached to degraded plant walls via capsule-like substances averaging 58 nm in width (range, 21 to 84 nm). Many bacilli appeared to adhere to forage substrates without distinct capsule-like material, although unattached bacteria with capsules were observed occasionally. Certain bacili appeared to be attached to degraded tissue via small amounts of extracellular material, but others apparently had no extracellular material. Bacilli with a distinct morphology due to an irregularly folded, electron-dense outer layer or layers (about 15 nm thick) and without fibrous extracellular material consituted about 37% of the attached bacteria and were observed to adhere so closely to degraded plant walls that the bacterial shape conformed to the shape of the degraded zone. In the rumen ecosystem, bacteria appeared to adhere to plant substrates during degradation by capsule-like material and by small amounts of extracellular material, as well as by the other means not observable by electron microscopy.  相似文献   

16.

Background  

Phytochromes are photoreceptors, discovered in plants, that control a wide variety of developmental processes. They have also been found in bacteria and fungi, but for many species their biological role remains obscure. This work concentrates on the phytochrome system of Agrobacterium tumefaciens, a non-photosynthetic soil bacterium with two phytochromes. To identify proteins that might share common functions with phytochromes, a co-distribution analysis was performed on the basis of protein sequences from 138 bacteria.  相似文献   

17.
18.
D Sommer  P S Song 《Biochemistry》1990,29(7):1943-1948
The relative extent of chromophore exposure of the red-absorbing (Pr) and far-red-absorbing (Pfr) forms of 124-kDa oat phytochrome and the secondary structure of the phytochrome apoprotein have been investigated by using zinc-induced modification of the phytochrome chromophore. The absence of bleaching of Pr in the presence of a 1:1 stoichiometric ratio of zinc ions, in contrast to extensive spectral bleaching of the Pfr form, confirms previous reports of differential exposure of the Pfr chromophore relative to the Pr chromophore [Hahn et al. (1984) Plant Physiol. 74, 755-758]. The emission of orange fluorescence by zinc-chelated Pfr indicates that the Pfr chromophore has been modified from its native extended/semi-extended conformation to a cyclohelical conformation. Circular dichroism (CD) analyses of native phytochrome in 20 mM Tris buffer suggests that the Pr-to-Pfr phototransformation is accompanied by a photoreversible change in the far-UV region consistent with an increase in the alpha-helical folding of the apoprotein. The secondary structure of phytochrome in Tris buffer, as determined by CD, differs slightly from that of phytochrome in phosphate buffer, suggesting that phytochrome is a conformationally flexible molecule. Upon the addition of a 1:1 molar ratio of zinc ions to phytochrome, a dramatic change in the CD of the Pfr form is observed, while the CD spectrum of the Pf form is unaffected. Analysis of the bleached Pfr CD spectrum by the method of Chang et al. (1978) reveals that chelation with zinc ions significantly alters the secondary structure of the phytochrome molecule, specifically by increasing the beta-sheet content primarily at the expense of alpha-helical folding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号