首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4,4'-Biphenyl-di-N-butylcarbamate (1), (S)-1,1'-bi-2-naphthyl-2, 2'-di-N-butylcarbamate (S-2), (S)-1, 1'-bi-2-naphthyl-2-N-butylcarbamate-2'-butyrate (S-3), 2, 2'-biphenyl-di-N-butylcarbamate (4), 2, 2'-biphenyl-2-N-octadecylcarbamate-2'-N-octylcarbamate (5), 2, 2'-biphenyl-2-N-octadecylcarbamate-2'-N-phenylcarbamate (6), 2, 2'-biphenyl-2-N-butylcarbamate-2'-butyrate (7), 2, 2'-biphenyl-2-N-butylcarbamate-2'-ol (8), 2, 2'-biphenyl-2-N-octylcarbamate-2'-ol (9), (R)-1, 1'-bi-2-N-naphthyl-2-butylcarbamate-2'-ol (R-10), and glyceryl-1,2, 3-tri-N-butylcarbamate (11) are prepared and evaluated for their inhibition effects on porcine pancreatic cholesterol esterase. All inhibitors are irreversible inhibitors of the enzyme. Carbamates 1-3 and 7-10 are the first alkyl chain and esteratic binding site-directed irreversible inhibitors due to the fact that the reactivity of the enzyme is protected by the irreversible inhibitor, trifluoroacetophenone in the presence of these carbamates. Carbamate 1 is the least potent inhibitor for the enzyme probably due to the fact that the inhibitor molecule adopts a linear conformation and one of the carbamyl groups of the inhibitor molecule covalently interacts with the first alkyl chain binding site of the enzyme while the other carbamyl group of the inhibitor molecule exposes outside the active site. With near orthogonal conformations at the pivot bond of biaryl groups, one carbamyl group of carbamates S-2, S-3, and R-10 covalently binds to the first alkyl chain binding site of the enzyme while the other carbamyl, butyryl, or hydroxy group can not bind covalently to the second alkyl chain binding site probably due to the orthogonal conformations. Carbamates 4-9 and 11 are very potent inhibitors for the enzyme probably due to the fact that all these molecules freely rotate at the pivot bond of the biphenyl or glyceryl group and therefore can fit well into the bent-shaped first and second alkyl chains binding sites of the enzyme. Although, carbamates 4-6 and 11 are irreversible inhibitors of cholesterol esterase, the enzyme is not protected but further inhibited by trifluoroacetophenone in the presence of these carbamates. Therefore, carbamates 4-6 and 11 covalently bind to the first alkyl chain binding site of the enzyme by one of the carbamyl groups and may also bind to the second alkyl chain binding site of the enzyme by the second carbamyl group. Besides the bent-shaped conformation, the inhibition by carbamate 6 is probably assisted by a favorable pi-pi interaction between Phe 324 at the second alkyl chain binding site of the enzyme and the phenyl group of the inhibitor molecule. For cholesterol esterase, carbamates 8-10 are more potent than carbamates S-2, 4, and 5 probably due to the fact that the inhibitor molecules interact with the second alkyl chain binding site of the enzyme through a hydrogen bond between the phenol hydroxy group of the inhibitor molecules and the His 435 residue in that site.  相似文献   

2.
Pancreatic cholesterol esterase (CEase), which is secreted from the exocrine pancreas, is a serine hydrolase that aids in the bile salt-dependent hydrolysis of dietary cholesteryl esters and contributes to the hydrolysis of triglycerides and phospholipids. Additional roles for CEase in intestinal micelle formation and in transport of free cholesterol to the enterocyte have been suggested. There also are studies that point to a pathological role(s) for CEase in the circulation where CEase accumulates in atherosclerotic lesions and triggers proliferation of smooth muscle cells. Thus, there is interest in CEase as a potential drug target. 4-Chloro-3-alkoxyisocoumarins are a class of haloenol lactones that inhibit serine hydrolases and serine proteases and have the potential to be suicide inhibitors. In the present study, we have developed 3-alkoxychloroisocoumarins that are potent inhibitors of CEase. These inhibitors were designed to have a saturated cycloalkane ring incorporated into a 3-alkoxy substituent. The size of the ring as well as the length of the tether holding the ring was found to be important contributors to binding to CEase. 4-Chloro-3-(4-cyclohexylbutoxy)isocoumarin and 4-chloro-3-(3-cyclopentylpropoxy)isocoumarin were demonstrated to be potent reversible inhibitors of CEase, with dissociation constants of 11 nM and 19 nM, respectively. The kinetic results are consistent with predictions from molecular modeling.  相似文献   

3.
Chemical modification and site-specific mutagenesis approaches were used in this study to identify the active site serine residue of pancreatic cholesterol esterase. In the first approach, purified porcine pancreatic cholesterol esterase was covalently modified by incubation with [3H]diisopropylfluorophosphate (DFP). The radiolabeled cholesterol esterase was digested with CNBr, and the peptides were separated by high performance liquid chromatography. A single 3H-containing peptide was obtained for sequence determination. The results revealed the binding of DFP to a serine residue within the serine esterase homologous domain of the protein. Furthermore, the DFP-labeled serine was shown to correspond to serine residue 194 of rat cholesterol esterase (Kissel, J. A., Fontaine, R. N., Turck, C. W., Brockman, H. L., and Hui, D. Y. (1989) Biochim. Biophys. Acta 1006, 227-236). The codon for serine 194 in rat cholesterol esterase cDNA was then mutagenized to ACT or GCT to yield mutagenized cholesterol esterase with either threonine or alanine, instead of serine, at position 194. Expression of the mutagenized cDNA in COS-1 cells demonstrated that substitution of serine 194 with threonine or alanine abolished enzyme activity in hydrolyzing the water-soluble substrate, p-nitrophenyl butyrate, and the lipid substrates cholesteryl [14C]oleate and [14C] lysophosphatidylcholine. These studies definitively identified serine 194 in the catalytic site of pancreatic cholesterol esterase.  相似文献   

4.
p-Nitrophenyl and cholesteryl-N-alkyl carbamates are good inhibitors of porcine pancreatic cholesterol esterase-catalyzed hydrolysis of p-nitrophenyl butyrate. p-Nitrophenyl-N-butyl and N-octyl carbamates (compounds 1 and 2, respectively) are potent active site-directed irreversible inhibitors of this enzyme. The inhibition of cholesterol esterase by compound 1 or 2 shows saturation kinetics with increasing inhibitor concentration. The activity of cholesterol esterase in the presence of compound 1 or 2 can be protected by the competitive inhibitor, phenylboronic acid. First-order decreases in cholesterol esterase activity effected by compound 1 or 2 are also observed in the presence of taurocholate/phosphatidylcholine micelles. Dilution of the inhibited enzyme results in a gradual return of activity, the rate of which is increased in the presence of the nucleophile hydroxylamine. Hence, inhibition of cholesterol esterase-catalyzed hydrolysis of p-nitrophenyl butyrate by compound 1 or 2 in the aqueous or micellar phase occurs via a carbamyl-cholesterol esterase mechanism. The turnover of the butyl carbamylenzyme is increased in the presence of micelles, which indicates that the micelles have a direct effect on the catalytic activity of the enzyme. However, this effect is dependent on the structure of the substrate as the turnover of the octyl carbamylenzyme is unaffected in the presence of micelles. A comparison of the second-order rate constants for the inhibition of cholesterol esterase by compound 1 or 2 indicates that the octyl derivative is the more potent inhibitor. Cholesteryl-N-alkyl carbamates do not carbamylate cholesterol esterase but instead act as reversible inhibitors. This is due to the stability of cholesteryl carbamates relative to p-nitrophenyl carbamates.  相似文献   

5.
6.
We present a new class of inhibitors of pancreatic cholesterol esterase (CEase) based on ‘priviledged’ 5-benzylidenerhodanine and 5-benzylidene-2,4-thiazolidinedione structural scaffolds. The lead structures (5-benzylidenerhodanine 4a and 5-benzylidene-2,4-thiazolidinedione 4b) were identified in an in-house screening and these inhibited CEase with some selectivity over another serine hydrolase, acetylcholinesterase (AChE) (4a, CEase IC50 = 1.76 μM vs AChE IC50 = 5.14 μM and 4b, CEase IC50 = 5.89 μM vs AChE IC50 >100 μM). A small library of analogs (5a10a) containing a core amino acid in place of the glycerol group of the lead structures, was prepared to explore other potential binding interaction with CEase. These analogs inhibited CEase with IC50 values ranging from 1.44 to 85 μM, with the majority exhibiting some selectivity for CEase versus AChE. The most potent compound of the library (10a) had 17-fold selectivity over AChE. We also report molecular docking (with CEase) and detailed kinetic analysis on the amino acid analogs to further understand the associated structure–activity relationships.  相似文献   

7.
S-Formylglutathione hydrolases (SFGHs) are highly conserved thioesterases present in prokaryotes and eukaryotes, and form part of the formaldehyde detoxification pathway, as well as functioning as xenobiotic-hydrolysing carboxyesterases. As defined by their sensitivity to covalent modification, SFGHs behave as cysteine hydrolases, being inactivated by thiol alkylating agents, while being insensitive to inhibition by organophosphates such as paraoxon. As such, the enzyme has been classified as an esterase D in animals, plants and microbes. While SFGHs do contain a conserved cysteine residue that has been implicated in catalysis, sequence analysis also reveals the classic catalytic triad of a serine hydrolase. Using a combination of selective protein modification and X-ray crystallography, AtSFGH from Arabidopsis thaliana has been shown to be a serine hydrolase rather than a cysteine hydrolase. Uniquely, the conserved reactive cysteine (Cys59) previously implicated in catalysis lies in close proximity to the serine hydrolase triad, serving a gate-keeping function in comprehensively regulating access to the active site. Thus, any covalent modification of Cys59 inhibited all hydrolase activities of the enzyme. When isolated from Escherichia coli, a major proportion of recombinant AtSFGH was recovered with the Cys59 forming a mixed disulfide with glutathione. Reversible disulfide formation with glutathione could be demonstrated to regulate hydrolase activity in vitro. The importance of Cys59 in regulating AtSFGH in planta was demonstrated in transient expression assays in Arabidopsis protoplasts. As determined by fluorescence microscopy, the Cys59Ser mutant enzyme was shown to rapidly hydrolyse 4-methylumbelliferyl acetate in paraoxon-treated cells, while the native enzyme was found to be inactive. Our results clarify the classification of AtSFGHs as hydrolases and suggest that the regulatory and conserved cysteine provides an unusual redox-sensitive regulation to an enzyme functioning in both primary and xenobiotic metabolism in prokaryotes and eukaryotes.  相似文献   

8.
A quantitative structure-activity relationship for the inhibition of Lactobacillus casei dihydrofolate reductase by 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(3-X-phenyl)-s-triazines has been derived: log1C = 0.53π3 ? 0.67 log (β·10π3 + 1) + 0.79MR′ + 3.13 where log β = ?3.46 and r = 0.949 for 28 congeners. In this expression C is the molar concentration of triazine causing 50% inhibition, π3 is the hydrophobic constant for the 3-X-phenyl substituent, MR′ is the molar refractivity of certain substituents, β is an iteratively derived coefficient, and r is the multiple least squares correlation coefficient. This correlation is quite different from those found with the same type of inhibitors acting on bovine and rat liver dihydrofolate reductase. The differences are discussed. The correlation equations for the triazines acting on purified enzymes are compared with equations correlating triazines inhibiting the growth of Staphylococcus aureus and Escherichia coli.  相似文献   

9.
Mapping the active site of meprin-A with peptide substrates and inhibitors   总被引:2,自引:0,他引:2  
R L Wolz  R B Harris  J S Bond 《Biochemistry》1991,30(34):8488-8493
The extended substrate-binding site of meprin-A, a tetrameric metalloendopeptidase from brush border membranes of mouse kidney proximal tubules, was mapped with a series of peptide substrates. Previous studies led to the development of the chromogenic substrate Phe5(4-nitro)bradykinin for meprin-A. With this substrate, several biologically active peptides were screened as alternate substrate inhibitors, and, of these, bradykinin (RPPGFSPFR) was found to be the best substrate with a single cleavage site (Phe5-Ser6). Three types of bradykinin analogues were used for a systematic investigation of substrate specificity: (1) nonchromogenic bradykinin analogues with substitutions in the P3 to P3' subsites were used as alternative substrate inhibitors of nitrobradykinin hydrolysis, (2) analogues of nitrobradykinin with variations in the P1' position were tested as substrates, and (3) intramolecularly quenched fluorogenic bradykinin analogues with substitutions in the P1 to P3 sites were tested as substrates. A wide variety of substitutions in P1' had little effect on KM (174-339 microM) but markedly affected kcat (51.5 s-1 = A greater than S greater than R greater than F greater than K greater than T greater than E = 0). Substitutions in P1 had a greater effect on KM (366 microM-2.46 mM) and also strongly affected kcat (98.5 s-1 = A greater than F much greater than L greater than E greater than K = 2.4 s-1). The variety of allowed cleavages indicates that meprin-A does not have strict requirements for residues adjacent to the cleavage site. Substitutions farther from the scissle bond also affected binding and hydrolysis, demonstrating that multiple subsite interactions are involved in meprin-A action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Stereochemical mapping of the active site of glutamine synthetase   总被引:1,自引:0,他引:1  
  相似文献   

11.
Photochemical mapping of the active site of myosin.   总被引:1,自引:0,他引:1  
The active sites of myosin from skeletal, smooth and scallop muscle have been partly characterized by use of a series of photoreactive analogues of ATP. Specific labelling was attained by trapping these analogues in their diphosphate forms at the active sites by either cross-linking two reactive thiols (skeletal myosin) or by formation of stable vanadate-metal ion transition state-like complexes (smooth muscle and scallop myosin). By use of this approach combined with appropriate chemistry, several key residues in all three myosins have been identified which bind at or near the adenine ring, the ribose ring and to the gamma-phosphate of ATP. This information should aid in the solution of the crystal structure of the heads of myosin and in defining a detailed structure of the ATP binding site.  相似文献   

12.
13.
Phenylalanine chloromethyl ketone covalently attached to porous glass beads was synthesized to serve as a solid-phase active site directed inhibitor of chymotrypsin-like proteolytic enzymes. The solid-phase reagent inhibited 20 nmol of bovine chymotrypsin per gram of glass and covalently bound 30 nmol of protein per gram of glass. Sepharose-bound lysine chloromethyl ketones were synthesized to serve as inhibitors of trypsin-like enzymes. Sepharose-MethionylLysyl chloromethyl ketone inactivated and bound about 6.8 nmol of enzyme per ml of settled gel. In a preliminary experiment, a cyanogen bromide cleavage of the methionine residues showed that it should be possible to release all peptides but the peptide containing the active-site histidine. The immobilized trypsin was also reduced, carboxymethylated and digested with chymotrypsin. The potential of the solid-phase approach is in the isolation of a specific serine proteinase and in the sequence determination of residues surrounding the active-site histidine.  相似文献   

14.
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable potent antiproliferative synthetic drugs.  相似文献   

15.
The existence of an acid cholesterol esterase in human liver   总被引:3,自引:0,他引:3  
  相似文献   

16.
The photochromic ligand PTA is shown to exhibit induced optical activity only if it is in the trans- form and bound to an asymmetric, ordered macromolecular matrix possessing hydrophobic binding sites. This observation can be used to probe for the existence and location of hydrophobic, ordered amino acids in the active cleft of an enzyme. It also explains the regulation of enzymic activity by reversible photo isomerization of PTA.  相似文献   

17.
The potential of papain-like cysteine proteases, such as cathepsin B, as drug discovery targets for systemic human diseases has prevailed over the past years. The development of potent and selective low-molecular cathepsin B inhibitors relies on the detailed expertise on preferred amino acid and inhibitor residues interacting with the corresponding specificity pockets of cathepsin B. Such knowledge might be obtained by mapping the active site of the protease with combinatorial libraries of peptidic substrates and peptidomimetic inhibitors. This review, for the first time, summarizes a wide spectrum of active site mapping approaches. It considers relevant X-ray crystallographic data and discloses propensities towards favorable protein-ligand interactions in case of the therapeutically relevant protease cathepsin B.  相似文献   

18.
19.
A neutral cholesterol esterase has been purified to homogeneity from the cytosolic fraction of rat liver. The 105,000 x g supernatant fraction of rat liver was applied to a DEAE-cellulose column to isolate a partially purified fraction of hepatic cholesterol esterase. Immunoblot analysis of the partially purified liver fraction with the anti-porcine pancreatic cholesterol esterase IgG demonstrated a single band with a molecular weight of 67,000. The hepatic protein was then isolated by immunoaffinity chromatography technique using a column constructed with antibodies prepared against the pancreatic cholesterol esterase. Characterization of the hepatic cholesterol esterase revealed that the hepatic enzyme shared antigenic epitopes with the pancreatic cholesterol esterase and was similarly activated by addition of bile salt such as taurocholate. Moreover, amino-terminal sequencing analysis of the hepatic cholesterol esterase showed an identical sequence with the pancreatic enzyme. Taken together, these results showed that the cholesterol esterases in the liver and the pancreas are very similar and possibly identical proteins.  相似文献   

20.
The cholesterol analogue 25-doxyl-27-nor-cholesterol (CNO), was found to be a substrate for cytochrome P-450scc. Upon incubation with the cytochrome P-450scc electron transfer system, CNO is transformed to pregnenolone (Km = 33 microM, Vmax = 0.32 min-1). The pregnenolone formation from endogenous cholesterol is strongly inhibited by CNO (50% at 5 microM). It binds tightly to cytochrome P-450scc as evidenced by a reversed type I spectral absorbance change (Kd = 5.9 microM) which is paralleled by a greater hyperfine splitting of the room-temperature CNO ESR spectrum due to an enhanced probe immobilization (Kd = 1.9 microM). This finding is in accord with a rotational correlation time of about 10(-7) s, which is close to the tumbling rate of the protein. At 110 K the CNO-bound cytochrome P-450scc displays the ESR g-values gx = 2.404/2.456, gy = 2.245 and gz = 1.916; these are different from those of cholesterol-liganded cytochrome P-450scc and may thus serve as a marker for cytochrome P-450scc. Our data indicate that the stereospecificity of the cytochrome P-450scc side-chain-cleaving activity is not dependent on the nature of the cholesterol side-chain termination (C25 to C27). The substrate binding site is however rather sensitive to a modification of the side chain. The doxyl ring confers a stronger affinity of the substrate to the enzyme. Upon binding it becomes embedded in the protein matrix, and we estimate that its final position is 0.6-1.0 nm from the heme moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号