首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Reciprocal interspecific F1 hybrids of deermice (Peromyscus maniculatus) and oldfield mice (P. polionotus) differ significantly and substantially in fetal and placental, as well as adult, size and weight. Hybrid fetal mortality is associated with large conceptus size. Skin grafts were exchanged between and within the two species to ascertain whether any relationship exists between mean graft retention time and body size of fetuses and adults. P. maniculatus skin grafted to P. polionotus rejected significantly earlier than the reciprocal xenograft. All interspecific graft combinations rejected significantly earlier than intraspecific grafts. Pre-immunization of female P. maniculatus with con- and trans-specific paternal spleen cell antigens reduced fetal, placental, neonatal, and ten-day size compared with controls. Size, weight, fertility, and graft rejection data were compared with several theoretical models. The data were consistent with the hypothesis that immunological disparity between the species could produce marked size variations in reciprocal hybrids. Multiple minor histocompatibility factors can account for large placental size and fetal mortality in Peromyscus hybrids. Physiological reproductive isolation may result from immunological differences between closely allied species.  相似文献   

5.
6.
We isolated and characterized 60 novel microsatellite markers from the closely related oldfield mouse (Peromyscus polionotus) and deer mouse (Peromyscus maniculatus) for studies of conservation, ecological, quantitative and population genetics. We assessed all 60 markers in a wild population of Peromyscus polionotus rhoadsi (N = 20) from central Florida and found an average of nine alleles per marker and an observed heterozygosity (HO) of 0.66 (range = 0.00–1.00). These polymorphic markers contribute to the growing number of genomic resources for Peromyscus, an emerging model system for ecological and evolutionary research.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Data from genetic crosses of Peromyscus maniculatus and P. polionotus suggest that electrophoretic variants of liver alcohol dehydrogenase are coded by alleles at a single locus. These alleles, designated Adh F , Adh S , and Adh N , determine, respectively, the fast, slow, and not detectable (null) ADH electrophoretic phenotypes. Heterozygotes (Adh F /Adh S ) exhibit three bands on zymograms, suggesting a dimeric subunit structure for the enzyme. However, Adh F /Adh N and Adh S /Adh N animals exhibit a single band, suggesting that the Adh N allele does not produce a polypeptide subunit capable of dimerizing into an active molecule. Fast and slow electrophoretic phenotypes exhibit multiple bands which can be converted into single major fast and slow bands, respectively, upon treatment with oxidized or reduced NAD. Addition of NAD also stabilizes both the fast and slow enzyme to heat inactivation at 60 C for at least 30 min.This work was supported by Predoctoral Fellowship AA-05067 from the National Institute of Alcohol Abuse and Alcoholism to K. G. B. and South Carolina Commission on Alcohol and Drug Abuse Grant 7607. Also, partial support was provided by NIH Grant CA-16184.  相似文献   

14.
15.
16.
17.
To examine how developmental experiences alter neural pathways associated with adult social behavior, we cross-fostered pups between the more aggressive and monogamous California mouse (Peromyscus californicus) and the less aggressive and polygamous white-footed mouse (P. leucopus). Cross-fostered males became more like their foster parents when tested as adults. Male white-footed mice became more aggressive only in an aggression test in a neutral arena, whereas the territorial California mice became less aggressive in resident-intruder aggression test, as measured by attack latency. Only the species that displayed a change in resident-intruder aggression showed a change in arginine vasopressin (AVP) levels: cross-fostered California mice had significantly lower levels of AVP-immunoreactive (AVP-ir) staining than controls in the bed nucleus of the stria terminalis (BNST) and the supraoptic nucleus (SON) and a nonsignificant trend toward lower levels in the medial amygdala (MA). Neither species showed changes in AVP-ir staining in a control area, the paraventricular nucleus (PVN). The changes in AVP-ir staining in the BNST and SON may not be caused by stress because cross-fostering was not associated with changes in adult plasma concentrations of two steroid hormones, corticosterone and testosterone, that have been associated with stress-related alterations in AVP pathways. These results suggest that manipulating the early parental environment can directly alter both a neurotransmitter system and species-typical patterns of social behavior, but that these effects may vary between species and under different social contexts.  相似文献   

18.
《Animal behaviour》1986,34(4):998-1006
Experiments were performed to compare homospecific and heterospecific species choice in two closely related species of white-footed mice, Peromyscus californicus and P. eremicus. Both species significantly chose the homospecific stimulus animal. Significant homospecific choice was made by mice from sympatric but not from allopatric populations. Reciprocal cross-fostering between the two species resulted in significant choice for the heterospecific (foster) species by P. eremicus, and random choice by cross-fostered P. californicus. Laboratory-reared controls chose significantly for the homospecific chamber. No significant difference in choice performance was demonstrated between males and females, even when the oestrus stages of the females (both stimulus and test animals) were statistically controlled. A comparison of different test durations and temporal regimes of data collection was performed and 90 min was found to be the most efficient experiment duration with our apparatus.  相似文献   

19.
The rodent genus Peromyscus is the most numerous and species-rich mammalian group in North America. The naturally occurring diversity within this genus allows opportunities to investigate the genetic basis of adaptation, monogamy, behavioral and physiological phenotypes, growth control, genomic imprinting, and disease processes. Increased genomic resources including a high quality genetic map are needed to capitalize on these opportunities. We produced interspecific hybrids between the prairie deer mouse (P. maniculatus bairdii) and the oldfield mouse (P. polionotus) and scored meiotic recombination events in backcross progeny. A genetic map was constructed by genotyping of backcross progeny at 185 gene-based and 155 microsatellite markers representing all autosomes and the X-chromosome. Comparison of the constructed genetic map with the molecular maps of Mus and Rattus and consideration of previous results from interspecific reciprocal whole chromosome painting allowed most linkage groups to be unambiguously assigned to specific Peromyscus chromosomes. Based on genomic comparisons, this Peromyscus genetic map covers ~83 % of the Rattus genome and 79 % of the Mus genome. This map supports previous results that the Peromyscus genome is more similar to Rattus than Mus. For example, coverage of the 20 Rattus autosomes and the X-chromosome is accomplished with only 28 segments of the Peromyscus map, but coverage of the 19 Mus autosomes and the X-chromosome requires 40 chromosomal segments of the Peromyscus map. Furthermore, a single Peromyscus linkage group corresponds to about 91 % of the rat and only 76 % of the mouse X-chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号