首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Plasma oxidized low-density lipoprotein (OX-LDL) levels are elevated in patients with renal diseases, including diabetic nephropathy. We examined effects of OX-LDL on cell proliferation and extracellular matrix (ECM) production by using normal human mesangial cells. Furthermore, we examined possible involvement of peroxisome proliferator-activated receptor gamma (PPARgamma). Mesangial cell proliferation with OX-LDL, 9-hydroxy-10,12-octadecadienoic acid (9HODE), and 13-hydroxy-9,11-octadecadienoic acid (13HODE), the major components of OX-LDL, were determined by 5-bromo-2'-deoxyuridine (BrdU) or 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) incorporation. The effect of OX-LDL on mesangial cell proliferation with PD98059 pretreatment was determined by BrdU incorporation. Type IV collagen, fibronectin, and PPARgamma expression with OX-LDL or 9HODE or 13HODE was determined by Western blotting. Type IV collagen expression with antisense oligonucleotide against PPARgamma pretreatment was also determined by Western blotting. The effect of PD98059 pretreatment on PPARgamma expression was determined by Western blotting. In mesangial cells exposed to isolated OX-LDL from human plasma, BrdU incorporation was increased, and this increase was deleted by PD98059. Type IV collagen expression was significantly increased by OX-LDL. 9HODE and 13HODE increased BrdU and MTT incorporation into mesangial cells and also increased expressions of Type IV collagen and fibronection, the major components of ECM. PPARgamma expression in mesangial cells was stimulated by 9HODE. The reduction of PPARgamma synthesis by pretreatment of antisense oligonucleotide against PPARgamma remarkably attenuated Type IV collagen synthesis induced by 9HODE. PPARgamma expression induced by 9HODE was also reduced by PD98059 pretreatment. These findings demonstrate that 9HODE, the major component of OX-LDL, stimulates cell proliferation and ECM production of human mesangial cells. In addition, the stimulatory effects are, at least in part, mediated by PPARgamma, which may exist in downstream of ERK1/2 pathway.  相似文献   

2.
As a membrane-spanning protein, NG2 chondroitin sulfate proteoglycan interacts with molecules on both sides of plasma membrane. The present study explored the role of NG2 in the pathogenesis of diabetic nephropathy. In the normal kidneys, NG2 was observed predominantly in glomerular mesangium, Bowman's capsule and interstitial vessels. Both mRNA and protein expression in kidneys was significantly higher in strepozotocin-induced diabetic rats than that in normal rats. In the cultured rat mesangial cell line HBZY-1, overexpression of NG2 promoted mesangial cell proliferation and extracellular matrix (ECM) production, such as type VI collagen and laminin. Furthermore, target knockdown of NG2 resulted in decreased cell proliferation and ECM formation. The observations suggest that NG2 is up-regulated in diabetic nephropathy. It actively participates in the development and progression of glomerulosclerosis by stimulating proliferation of mesangial cells and deposition of ECM.  相似文献   

3.
4.
While recent work has implicated Tbx20 in myocardial maturation and proliferation, the role of Tbx20 in heart valve development remains relatively unknown. Tbx20 expression was manipulated in primary avian endocardial cells in order to elucidate its function in developing endocardial cushions. Tbx20 gain of function was achieved with a Tbx20-adenovirus, and endogenous Tbx20 expression was inhibited with Tbx20-specific siRNA in cultured endocardial cushion cells. With Tbx20 gain of function, the expression of chondroitin sulfate proteoglycans (CSPG), including aggrecan and versican, was decreased, while the expression of the matrix metalloproteinases (MMP) mmp9 and mmp13 was increased. Consistent results were observed with Tbx20 loss of function, where the expression of CSPG genes increased and MMP genes decreased. In addition, cushion mesenchyme proliferation increased with infection of a Tbx20-adenovirus and decreased with transfection of Tbx20-specfic siRNA. Furthermore, BMP2 treatment resulted in increased Tbx20 expression in endocardial cushion cells, and loss of Tbx20 led to increased Tbx2 and decreased N-myc gene expression. Taken together, these data support a role for Tbx20 in repressing extracellular matrix remodeling and promoting cell proliferation in mesenchymal valve precursor populations in endocardial cushions during embryonic development.  相似文献   

5.
Stress proteins (heat shock proteins [hsps]) serve a number of protective functions, including protection from apoptosis and acting as chaperones during protein biosynthesis. For example, hsp 27 has been defined as a chaperone for the G3 domain of aggrecan, while hsp 47 is the chaperone for type I collagen. Separate cytoprotective roles for hsp 27 and hsp 70 have been demonstrated. The aim of this study was to define the expression of hsps in osteoblastic and chondrocytic cells of the growing rat long bone in relationship to the immunohistochemical localization of aggrecan, type I collagen and the presence of fragmented DNA that defines apoptotic events. Tibiae were harvested from Fisher 344 rats (n=6) and fixed in 10% buffered formalin. Samples were decalcified in 10% EDTA, bisected, and processed for histologic examination. Sections (5 mm) were immunohistochemically stained using a streptavidin-biotin detection method. Co-localization of hsps with apoptosis was achieved using the TUNEL procedure. In the rat tibia growth plate, aggrecan was generally distributed throughout cartilage and chondrocytes. However, hsp 27 expression was observed only in the lower hypertrophic chondrocytes. hsp27 was present in osteoblasts lining newly formed bone. hsp 47 staining was also prominent within these osteoblasts where collagen type I immunolocalization occurred. The inducible form of hsp 70 was localized to the osteoblastic cells lining new bone in the primary spongiosa. In cartilage, DNA fragmentation was restricted to the hypertrophic, hsp27-positive, chondrocytes. In contrast, DNA fragmentation was not co-localized with hsp27-positive osteoblastic cells of the primary spongiosa, although occasional apoptotic cells were identified. These results indicate that apoptosis is a mechanism by which hypertrophic chondrocytes are eliminated from cartilage prior to calcification, but that other mechanisms are also likely to be involved. They also suggest that hsps have cytoprotective and biosynthetic functions within osteoblasts and chondrocytes, but apoptotic signals may override these effects in some instances, resulting in apoptosis.  相似文献   

6.
In the late stages of the tissue repair process, as well as during normal tissue turnover, tissue homeostasis may rely mostly on autocrine mechanisms. Accordingly, we have cultured normal human fibroblasts on plastic surfaces and within three-dimensional collagen gels in order to study, in this environment, the action of autologous medium conditioned by the same cells. We have observed that inside collagen gels the autologous medium strongly restrains cell proliferation, due to fibroblast-secreted growth factors, whose inhibitory effect can be annulled by suramin. Furthermore, concerning extracellular matrix formation, conditioned medium has no effect on novel collagen synthesis, while it up-regulates collagenase MMP-1 only in cultures on plastic. On the other hand, it strongly inhibits the secretion of the collagenase inhibitor TIMP-1, irrespective of the substratum. This effect is completely blocked by SB 203580, an inhibitor of the p38 MAP kinase. The above suggest the presence of an autoregulatory mechanism involved in tissue homeostasis.  相似文献   

7.
This study describes a potential of Phytolaccaceae (Phytolacca americana var.) as an inhibitor of high glucose-stimulated production of extracellular matrix (ECM) proteins and TGF-beta in cultured glomerular mesangial cells (GMCs). Raising the ambient glucose concentration for 24 hrs caused a dose-dependent increase in [3H]thymidine incorporation of GMCs, and the maximal response was achieved at 20 mM. Phytolaccaceae extracts (2.5-20 microg/ml) inhibited the high glucose-induced [3H]thymidine incorporation in a dose-dependent manner, and the concentrations tested here did not affect to the cell viability. Exposure of the GMCs to 20 mM glucose caused both ECM (collagen and fibronectin) accumulation and TGF-beta secretion, and these changes were significantly diminished by treatment of GMCs with Phytolaccaceae (10 microg/ml). Taken together, these results indicate that Phytolaccaceae inhibits the high glucose-induced GMCs proliferation partially through suppressing accumulation of ECM components and TGF-beta production, suggesting that Phytolaccaceae may be a promising agent for treating the development and progression of diabetic glomerulopathy.  相似文献   

8.
Abstract

Advanced diabetic nephropathy is characterized by abnormal synthesis of extracellular matrix (ECM) proteins, such as collagen I (COL I). The present experiments were designed to test the hypothesis that the presence of abnormal ECM proteins may be responsible for increased generation of reactive oxygen species (ROS) that are thought to have an important role in the pathogenesis of diabetic nephropathy. SV40 MES 13 murine mesangial cells were plated on COL I or collagen IV (COL IV) for 3 h at 5.5 or 25 mM D-glucose concentration. Increased intracellular ROS generation and reduced intracellular nitric oxide (NO) production was measured in cells attached to COL I compared with cells attached to COL IV. Treatment with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NO synthase, reduced this difference in ROS generation between cells attached to either COL I or IV. The results using antibodies against integrins also indicated that an α2 integrin-mediated pathway was involved in the different response in ROS generation caused by ECM proteins. These results suggest that contact between altered ECM proteins that are present in advanced diabetic nephropathy and mesangial cells has the potential to increase intracellular oxidative stress, leading to progressive glomerular damage.  相似文献   

9.
Advanced diabetic nephropathy is characterized by abnormal synthesis of extracellular matrix (ECM) proteins, such as collagen I (COL I). The present experiments were designed to test the hypothesis that the presence of abnormal ECM proteins may be responsible for increased generation of reactive oxygen species (ROS) that are thought to have an important role in the pathogenesis of diabetic nephropathy. SV40 MES 13 murine mesangial cells were plated on COL I or collagen IV (COL IV) for 3 h at 5.5 or 25 mM D-glucose concentration. Increased intracellular ROS generation and reduced intracellular nitric oxide (NO) production was measured in cells attached to COL I compared with cells attached to COL IV. Treatment with N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NO synthase, reduced this difference in ROS generation between cells attached to either COL I or IV. The results using antibodies against integrins also indicated that an alpha(2) integrin-mediated pathway was involved in the different response in ROS generation caused by ECM proteins. These results suggest that contact between altered ECM proteins that are present in advanced diabetic nephropathy and mesangial cells has the potential to increase intracellular oxidative stress, leading to progressive glomerular damage.  相似文献   

10.
11.
12.
We recently identified ganglioside GM3 as a modulator of glomerular hypertrophy in streptozotocin-induced diabetic rats (Life Sci., 72: 1997-2006, 2003). This study examined whether alteration of ganglioside GM3 expression could modulate the high glucose-induced proliferation of glomerular mesangial cells (GMCs). GMCs isolated from rat kidneys were cultured under normal (5.6 mM) or high (25 mM) glucose condition for 24-72 hrs. Cell proliferation was predominantly stimulated when GMCs were cultured with high glucose as well as 20 microM of d-threo-PDMP, an inhibitor of ganglioside biosynthesis, for 24 hrs, whereas raising ambient glucose significantly reduced the mesangial sialic acid contents. Based upon mobility on high-performance thin-layer chromatography (HPTLC), GMCs showed a complex pattern of ganglioside expression that consisted of three major components of gangliosides, mainly GM3. High glucose induced a significant reduction of ganglioside expression with apparent changes in the composition of major ganglioside GM3, and semi-quantitative analysis by HPTLC showed that ganglioside GM3 was reduced to 62% of GMCs cultured under normal glucose condition. A prominent immunofluorescence microscopy using anti-GM3 monoclonal antibody also showed a dramatic disappearance of immunoreactivity in high glucose-treated GMCs. Moreover, high glucose significantly lowered the Km values of GM3 synthase (16 microM vs. 49 microM), but did not change the Vmax. These results provide the pathophysiological relationship between the high glucose-induced proliferation of GMCs and the decreased expression of ganglioside GM3, indicating a mechanism for the negative regulation of mesangial proliferation by ganglioside GM3. This mechanism may play an important role in the development of diabetic glomerulopathy.  相似文献   

13.
Several classes of hydroxyproline-rich proteins have been found in the cell walls of plants. Monomeric forms of the proteins can be solubilized from the walls, but the majority of the proteins are insolubilized by as yet unidentified crosslinks. The proteins have repeated sequences and are often rich in basic amino acids. The repeat proline-rich region may be serving to generate an elongated rod-like structure while the regularly spaced lysines probably interact with the acidic pectins. Several of the genes coding for these proteins have been isolated, and their expression has been found in some cases to be tissue specific and in others inducible by hormones and various types of stress.  相似文献   

14.
As one major diabetic complication, diabetic nephropathy (DN) has been reported to be associated with various kinds of microRNA (miRNA). Thus, we conducted this study to explore the potential of miR-370 in a rat model of DN through investigation of mesangial cell proliferation and extracellular matrix (ECM). A total of 40 healthy adult male Sprague–Dawley rats were enrolled and assigned into normal (n = 10) and DN ( n = 30, DN rat model) groups. Dual-luciferase reporter assay was performed for the targeting relationship between miR-370 and canopy 1 (CNPY1). Mesangial cells were collected and transfected with prepared mimic, inhibitor or small interfering RNA (siRNA) for analyzing the effect of miR-370 on DN mice with the help of expression and cell biological processes detection. CNPY1 was confirmed as a target gene of miR-370. DN mice had increased expression of miR-370, fibronectin, type I collagen (Col I), type IV collagen (Col IV), and plasminogen activator inhibitor-1 (PAI-1) but reduced CNPY1 expression. Cells transfected with miR-370 mimic and siRNA–CNPY1 had increased expression of fibronectin, Col I, Col IV, and PAI-1 but decreased CNPY1 expression. The miR-370 mimic and siRNA–CNPY1 groups showed increased cell proliferation, as well as elevated ECM accumulation and declined cell apoptosis rate as compared with the blank and negative control groups, with reverse trends observed in the miR-370 inhibitor group. Our study concludes that overexpression of miR-370 promotes mesangial cell proliferation and ECM accumulation by suppressing CNPY1 in a rat model of DN.  相似文献   

15.
The in vivo effects of ovariectomy in rats have been studied on cell proliferation and matrix synthesis in the growth plate cartilage by assessing immunohistochemically the levels of proliferating cell nuclear antigen and chondroitin sulphate proteoglycan(s). The serum levels of insulin-like growth factor-I and growth hormone were also measured by radioimmunoassay procedures. At 5 weeks after ovariectomy, the serum levels of the growth factor were significantly higher than those in sham-operated rats. In contrast, the level of growth hormone was lower. The nuclear staining of proliferating cell nuclear antigen was generally seen in the zone of proliferative chondrocytes from both groups of rats. Whereas almost all chondrocytes in the proliferative zone of ovariectomized rats expressed proliferating cell nuclear antigen immunoreactivity, fewer did so in that of the sham rats. Quantitative image analysis by ACAS 570 laser cytometry demonstrated that the n uclear antigen-positive sites in ovariectomized rats had significantly higher integrated values (staining intensity), areas and perimeters than those in sham rats. In addition, the number of chondroitin sulphate proteoglycan-immunoreactive cells in the proliferative chondrocytes was also higher in ovariectomized rats than in sham ones. These results suggest that ovariectomy significantly stimulates the cell proliferation and matrix synthesis in the growth plate cartilage, probably through the higher serum level of insulin-like growth factor-I.  相似文献   

16.
In addition to the major structural molecules, which are constitutively present in extracellular matrices, several proteins appear in the extracellular matrix only at specific stages in development or in association with specific pathological conditions. These proteins include thrombospondin-1 and -2, tenascin C, osteopontin, members of the cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed family, and secreted protein acidic and rich in cysteine (osteonectin). These proteins play important roles in regulating cell fate during development and in the pathogenesis of several diseases in adult animals. We will review the interactions of T cells with this class of molecules and their resulting effects on T cell behavior. Receptors and signal transduction pathways that mediate the actions of matricellular proteins on T cells are beginning to be defined. Transgenic mice are providing new insights into the functions of these proteins in vivo and are yielding insights into the significance of their reported dysregulation in several human diseases.  相似文献   

17.
To determine the effects of transforming growth factor-beta (TGF-beta) on the different cell types that exist in bone, cell populations (I-IV), progressively enriched in osteoblastic cells relative to fibroblastic cells, were prepared from fetal rat calvaria using timed collagenase digestions. TGF-beta did not induce anchorage-independent growth of these cells, nor was anchorage-dependent growth stimulated in most populations studied, despite a two- to threefold increase in the synthesis of cellular proteins. In all populations the synthesis of secreted proteins increased 2-3.5-fold. In particular, collagen, fibronectin, and plasminogen activator inhibitor synthesis was stimulated. However, different degrees of stimulation of individual proteins were observed both within and between cell populations. A marked preferential stimulation of plasminogen activator inhibitor was observed in each population, together with a slight preferential stimulation of collagen; the effect on collagen expression being directed primarily at type I collagen. In contrast, the synthesis of SPARC (secreted protein acidic rich in cysteine/osteonectin was stimulated approximately two-fold by TGF-beta, but only in fibroblastic populations. Collectively, these results demonstrate that TGF-beta stimulates matrix production by bone cells and, through differential effects on individual matrix components, may also influence the nature of the matrix formed by different bone cell populations. In the presence of TGF-beta, osteoblastic cells lost their polygonal morphology and alkaline phosphatase activity was decreased, reflecting a suppression of osteoblastic features. The differential effects of TGF-beta on bone cell populations are likely to be important in bone remodeling and fracture repair.  相似文献   

18.
19.
20.
BACKGROUND: Endothelium is supported, in normal conditions, by a basement membrane composed, among others, by collagen IV and laminin. Changes in the basement membrane composition could induce changes in endothelial cell modifying their interactions with leukocytes. METHODS AND RESULTS: Isolated polymorphonuclear cells (PMN) and peripheral blood mononuclear cells (PBMC) were added to cultured human umbilical endothelial cells (HuVEC) previously seeded on collagen IV, collagen I or gelatin. Adhesion of leukocytes to HUVEC and specific cytotoxicity were analysed. PMN adhesion and cytotoxicity were lower whereas those from PBMC were higher when HuVEC were seeded on collagen I, as compared with cells seeded on collagen IV. To analyse the mechanisms involved in these phenomena, P-selectin, ICAM-1, VCAM-1 and MCP- 1 expression were evaluated in HuVEC seeded on the different ECM components. P-selectin and mRNA expression of VCAM-1 were lower in cells seeded on collagen I. By contrast, MCP-1 expression was higher in collagen I. Collagen I-dependent effects were partially prevented when collagen I was treated with pepsin. ILK activity was lower in cells seeded on collagen I, whereas ERK 1/2 activity was enhanced. ILK overexpression reduced ERK 1/2 phosphorylation and this could promote the reduction in P-selectin and the increase in MCP-1. CONCLUSION: Collagen I decreased ILK activity and this would induce an increase in ERK 1/2 activity in HuVEC. As a consequence, the P-selectin content is diminished and, by contrast, the MCP-1 content is increased. The final effect is a lower recruitment of PMN and a higher adhesion of PBMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号