共查询到20条相似文献,搜索用时 15 毫秒
1.
Though DNase does not contain any cysteine residues, incubation of the enzyme with 2-nitro-5-thiocyanobenzoic acid in the presence of Ca2+ at pH values above 7.5 results in an irreversible inactivation of the enzyme. The inactivation also occurs when Ca2+ is replaced by Mg2+, but not in their absence. Amino acid analyses after acid hydrolyses of the completely inactivated ant the native enzymes show no significant differences in composition, including tryptophan and half-cystine residues. However, sodium dodecyl sulfate gel electrophoresis indicates enzyme cleavage by the treatment with 2-nitro-5-thiocyanobenzoic acid. This reagent does not inactivate chymotrypsin and lysozyme, and under conditions where bovine DNase is inactivated, does not inactivate other nucleases such as ribonuclease, snake venom phosphodiesterase, and spleen acid DNase. However, it inactivates malt DNase and can, therefore, be considered a specific inhibitor of DNase I. The inactivation kinetics is pseudo-first order, resembling Michaelis-Menten, with an affinity constant of 16.7 mM. It is the cyano group, not the thionitrobenzoic acid of 2-nitro-5-thiocyanobenzoic acid that reacts to form cyano-DNase. 相似文献
2.
Hydrolysis of triacylglycerol arachidonic and linoleic acid ester bonds by human pancreatic lipase and carboxyl ester lipase 总被引:2,自引:0,他引:2
The hydrolysis of polyenoic fatty acid ester bonds with pure human colipase-dependent lipase, with carboxyl ester lipase (CEL) and with these enzymes in combination was studied, using [3H]arachidonic- and [14C]linoleic acid-labelled rat chylomicrons as a model substrate. During the hydrolysis with colipase-dependent lipase, the amount of 3H appearing in 1,2-X-diacylglycerol (DG) markedly exceeded that of 14C. When CEL was added in addition this [3H]DG was efficiently hydrolyzed. CEL alone hydrolyzed the triacylglycerol (TG) at a low rate. The hydrolysis pattern with human duodenal content was similar to that seen with colipase-dependent lipase and CEL in combination. Increasing the concentration of taurodeoxycholate (TDC) and taurocholate (TC) or of TDC alone stimulated the hydrolysis of [3H]- and [14C]TG, but increased the accumulation of labelled DG that could act as substrate for CEL. It is suggested that very-long-chain polyenoic fatty acids of DG formed during the action of the colipase-dependent lipase on TG containing these fatty acids may be a physiological substrate for CEL. 相似文献
3.
4.
5.
Lisa M Landino Catherine B Mall Joshua J Nicklay Sarah K Dutcher Katherine L Moynihan 《Nitric oxide》2008,18(1):11-18
The modification of protein and non-protein thiols by oxidants including hydrogen peroxide (H(2)O(2)), peroxynitrite anion (ONOO(-)) and hypochlorous acid (HOCl) is well documented. Using an aromatic thiol, 5-thio-2-nitrobenzoic acid, and biologically relevant oxidants, we have identified higher oxidation states of sulfur including the sulfonic acid derivative and the disulfide S-oxide, a thiosulfinate, by HPLC and mass spectrometry. The initial reaction of ONOO(-) with 5-thio-2-nitrobenzoic acid yielded a transient red intermediate, the sulfenate anion. The red intermediate was observed when ONOO(-) and H(2)O(2) were used to oxidize 5-thio-2-nitrobenzoic acid and it persisted for several seconds at pH 7. HOCl oxidized the disulfide, 5,5'dithiobis(2-nitrobenzoic acid) to the corresponding sulfonic acid and no additional products were detected. Using this system, we can directly compare the thiol-oxidizing abilities of several oxidants. Because 5-thio-2-nitrobenzoic acid is the product of the reaction of Ellman's reagent with protein thiols, a detailed study of its stability in biological matrices where oxidants may be generated is warranted. 相似文献
6.
7.
A Hata D N Ridinger S D Sutherland M Emi L K Kwong J Shuhua A Lubbers B Guy-Grand A Basdevant P H Iverius 《The Journal of biological chemistry》1992,267(28):20132-20139
Most missense mutations of the lipoprotein lipase (LPL) gene identified among LPL-deficient subjects cluster in a segment of the sequence that encodes the catalytic triad as well as functional elements involved in the activation of the lipase at lipid-water interfaces. Consequently, loss of activity may result either from direct alterations of such functional elements or from less specific effects on protein folding and stability. This issue was addressed by examining biochemical properties of four such variants (A176T, G188E, G195E, and S244T) in a heterologous expression system (COS-1 cells). Variant G195E (GGA----GAA) was previously unreported. In all instances, inactive enzyme was recovered in medium, albeit at reduced levels. Cellular synthesis and extracellular degradation were similar to those for wild type, suggesting that reduced secretion resulted from increased intracellular degradation. When cell extracts were subjected to heparin-Superose affinity chromatography followed by elution on a linear salt gradient, all variants exhibited a single, inactive, low affinity immunoreactive peak. By contrast, wild-type enzyme presented an additional, high affinity, active species, which we interpret as homodimeric enzyme. Substitution of the active-site serine (S132A) led to loss of activity but maintenance of the high affinity species. When large amounts of the G188E variant were applied to the column, small but significant amounts of high affinity, active enzyme were recovered. Systematic substitutions at residue 188 showed that only glycine could accommodate structural constraints at this position. We conclude that the mutations examined did not impart lipase deficiency by affecting specific functional elements of the enzyme. Rather, they appear to affect protein folding and stability, and thereby formation and maintenance of subunit assembly. 相似文献
8.
L-cysteine, D-penicillamine, and L-glutathione were oxidized to symmetrical disulfides in the presence of Cu(II)(3,5-DIPS)2 and air-oxygen at physiologic pH, 7.3. Air-oxygen caused the oxidation of thiol reduced copper, Cu(I), to Cu(II), as evidenced by expected spectrophotometric changes in these reaction mixtures. L-cysteine, D-penicillamine, and L-glutathione formed mixed disulfides and TNB with the addition of DTNB to solutions of these thiols. The observed order of reactivity for these thiols with DTNB was: L-cysteine greater than D-penicillamine greater than L-glutathione. Surprisingly, Cu(II)(3,5-DIPS)2 converted these mixed disulfides to their symmetrical disulfides and DTNB, and although the initial conversion rate was rapid, complete conversion required more than two hours. These observations suggest caution with regard to the spectrophotometric determination of thiols immediately after the addition of Ellman's reagent. These results also clarify an earlier report concerning the oxidation of thiols by Cu(II)(o-phenanthroline)2 and offer caution with regard to the determination of thiols using DTNB in the presence of copper complexes. Spectrophotometric data are provided in support of the suggestion that analysis of plasma or cellular samples for thiols be done in the absence of copper(II) complexes to avoid false negative results. 相似文献
9.
10.
Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase 总被引:2,自引:0,他引:2
The concerted action of purified bovine gastric lipase and human pancreatic colipase-dependent lipase and colipase, or crude human pancreatic juice, in the digestion of human milk triacylglycerols was explored in vitro. Gastric lipase hydrolyzed milk triacylglycerol with an initially high rate but became severely inhibited already at low concentration of released fatty acid. In contrast, colipase-dependent lipase could not, by itself, hydrolyze milk triacylglycerol. However, a short preincubation of milk with gastric lipase, resulting in a limited lipolysis, made the milk fat triacylglycerol available for an immediate and rapid hydrolysis by pancreatic juice, and also for purified colipase-dependent lipase, provided colipase and bile salts were present. The same effect was obtained when incubation with gastric lipase was replaced by addition of long-chain fatty acid. Long-chain fatty acid increased the binding of colipase-dependent lipase to the milk fat globule. Binding was efficient only in the presence of both fatty acid and colipase. We conclude that a limited gastric lipolysis of human milk triacylglycerol, resulting in a release of a low concentration of long-chain fatty acids, is of major importance for the subsequent hydrolysis by colipase-dependent lipase in the duodenum. 相似文献
11.
D W Pettigrew 《Biochemistry》1986,25(16):4711-4718
Glycerol kinase (EC 2.7.1.30, ATP:glycerol 3-phosphotransferase) from Escherichia coli is inactivated by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and by N-ethylmaleimide (NEM) in 0.1 M triethanolamine at pH 7 and 25 degrees C. The inactivation by DTNB is reversed by dithiothreitol. In the cases of both reagents, the kinetics of activity loss are pseudo first order. The dependencies of the rate constants on reagent concentration show that while the inactivation by NEM obeys second-order kinetics (k2app = 0.3 M-1 s-1), DTNB binds to the enzyme prior to the inactivation reaction; i.e., the pseudo-first-order rate constant shows a hyperbolic dependence on DTNB concentration. Complete inactivation by each reagent apparently involves the modification of two sulfhydryl groups per enzyme subunit. However, analysis of the kinetics of DTNB modification, as measured by the release of 2-nitro-5-thiobenzoate, shows that the inactivation is due to the modification of one sulfhydryl group per subunit, while two other groups are modified 6 and 15 times more slowly. The enzyme is protected from inactivation by the ligands glycerol, propane-1,2-diol, ATP, ADP, AMP, and cAMP but not by Mg2+, fructose 1,6-bisphosphate, or propane-1,3-diol. The protection afforded by ATP or AMP is not dependent on Mg2+. The kinetics of DTNB modification are different in the presence of glycerol or ATP, despite the observation that the degree of protection afforded by both of these ligands is the same.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
13.
E Lenartowicz 《Biochemical and biophysical research communications》1992,184(2):1088-1093
Energized rat liver mitochondria in the presence of EGTA reduced linearly 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) at the rate of 7 nmol SH/min per mg protein within more than 1 hour at 20 degrees C. The Km for DTNB, 1.4 mM, was decreased by Mg2+ and spermine to 0.5 and 0.7 mM, respectively. The reaction was suppressed under conditions of decreasing mitochondrial content of NADPH, was blocked by 1,3-bis-(2-chloroethyl)-1-nitrosourea, the inhibitor of disulfide reductases, and was sensitive to external free Ca2+ in the micromolar range. After lysis of mitochondria the reduction of DTNB required the addition of NADPH and EGTA and was inhibited by 1 mM sodium arsenite. These observations suggest that the reduction of DTNB by mitochondria is catalyzed by Ca(2+)-sensitive thioredoxin reductase (EC 1.6.4.5). 相似文献
14.
Cloning and characterization of human pancreatic lipase cDNA 总被引:6,自引:0,他引:6
Pancreatic lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) hydrolyzes dietary long chain triacylglycerol to free fatty acids and monoacylglycerols in the intestinal lumen. In the presence of bile acids, the activity of lipase is stimulated by colipase. As a prelude to studying the relationship of the protein structures to the functional properties of lipase and colipase, a cDNA encoding human pancreatic lipase was isolated from a lambda gt11 cDNA library screened with a rabbit polyclonal anti-human pancreatic lipase antibody. The full length cDNA clone of 1477 base pairs contained an open reading frame encoding a 465-amino acid protein, including a 16-amino acid signal peptide. The nucleotide sequence was 69% identical to the dog pancreatic lipase cDNA. The predicted NH2-terminal protein sequence agreed with the published NH2-terminal sequence of human pancreatic lipase and the predicted protein sequence was 85 and 70% identical to the protein sequences of pig and dog pancreatic lipase, respectively. A region of homology around Ser-153 is conserved in a number of lipid-binding proteins. Human hepatic lipase and lipoprotein lipase share extensive homology with pancreatic lipase, suggesting that the three proteins are members of a small gene family. In vitro translation of mRNA transcribed from the cDNA resulted in a protein of the expected molecular size that could be processed by microsomal membranes to yield a glycolated protein with proper signal peptide cleavage. RNA blot analysis demonstrated tissue specificity for pancreatic lipase. Thus, for the first time, a full length human pancreatic lipase cDNA has been isolated and characterized. The demonstrated regions of homology with other lipases will aid definition of interactions with substrate and colipase through site-specific mutagenesis. 相似文献
15.
The rhizocticines and plumbemicines are two groups of di- and tripeptid antibiotics thought to interfere with threonine or threonine-related metabolism. Z-2-amino-5-phosphono-3-pentenoic acid, the common unusual amino acid constituent of the rhizocticines and plumbemicines, was found to irreversibly inhibit Escherichia coli threonine synthase in a time-dependent reaction that followed pseudo-first order and saturation kinetics. These data provide evidence that the toxicity of the rhizocticines and plumbemicines is due to the inhibition of threonine synthase by Z-2-amino-5-phosphone-3-pentenoic acid, which is liberated by peptidases after uptake into the target cell. Additionally, methods for the purification of threonine synthase from an overproducing E. coli strain and for the enzymatic synthesis of l-homoserine phosphate are described.Abbreviations APPA
Z-2-amino-5-phosphono-3-pentenoic acid
- HSerP
l-homoserine phosphate
- PEP
phosphoenolpyruvate
- PLP
pyndoxal 5-phosphate
- TS
threonine synthase 相似文献
16.
Ellman's reagent: 5,5'-dithiobis(2-nitrobenzoic acid)--a reexamination. 总被引:25,自引:0,他引:25
Accurate determination of thiol groups by means of Ellman's reagent [5,5′-dithiobis(2-nitrobenzoic acid), DTNB] has been limited by uncertainty about the molar absorption coefficient of the dianion of the product, 2-nitro-5-thiobenzoic acid (TNB). A procedure is described for the purification of TNB by reduction of commercial DTNB followed by gel chromatography and crystallization. Pure DTNB is prepared by reoxidation of purified TNB followed by gel chromatography and crystallization. The molar absorption coefficient of the dianion of TNB is 14,150 at 412 nm in dilute aqueous salt solutions. This value was confirmed independently by reduction of purified DTNB with cysteine. Titration of sulphydryl groups with DTNB can be done at pH 7.27 where the thiol group of TNB is 99.8% in the intensely-colored conjugate base form while the hydroxide-promoted hydrolysis of DTNB is minimal. 相似文献
17.
A chemical modification approach was used in this study to identify the active site serine residue of human pancreatic lipase. Purified human pancreatic lipase was covalently modified by incubation with [3H], [14C] tetrahydrolipstatin (THL), a potent inhibitor of pancreatic lipase. The radiolabeled lipase was digested with thermolysin, and the peptides were separated by HPLC. A single THL-peptide-adduct was obtained which was identical to that obtained earlier from porcine pancreatic lipase. This pentapeptide with the sequence VIGHS is covalently bound to a THL molecule via the side chain hydroxyl group of the serine unit corresponding to Ser-152 of the lipase. The selective cleavage of the THL-serine bond by mild acid treatment resulted in the formation of the delta-lactone Ro 40-4441 in high yield and clearly proves that THL is attached via an ester bond and with retention of stereochemistry at all chiral centers to the side chain hydroxyl group of Ser-152 of the lipase. The results obtained for human pancreatic lipase corroborate the inhibition mechanism of THL found on the porcine enzyme, and are in full agreement with the identification of the Ser-152 ... His-263 ... Asp-176 catalytic triad in the X-ray structure of human pancreatic lipase. 相似文献
18.
T Giller P Buchwald D Blum-Kaelin W Hunziker 《The Journal of biological chemistry》1992,267(23):16509-16516
We have isolated cDNAs coding for two novel human pancreatic lipase (hPL)-related human proteins, referred to as hPL-related proteins 1 and 2 (hPLRP1 and hPLRP2) and for hPL. The two novel proteins show an amino acid sequence identity to hPL of 68 and 65% for hPLRP1 and 2, respectively. All three proteins are secreted into the medium after transfection of COS cells with the corresponding cDNAs. The size of the three expressed proteins is similar and ranges between 45 and 50 kDa. The expressed hPLRP2 shows a lipolytic activity that is, however, in contrast to that of hPL only marginally dependent on the presence of colipase, whereas hPLRP1 shows no activity in this assay. A Northern analysis of normal human pancreas mRNA shows that the expression levels of hPLRP1 and hPLRP2 are about 4-fold and 24-fold lower, respectively, than that of hPL. hPLRP2 is, additionally, most closely related to a lipase reported to be expressed in mouse T-cells. A comparison of the sequences of the three proteins with sequences described as pancreatic lipases of other animal species shows three subfamilies of closer kinship. This suggests that the two novel proteins also exist in other species and that some of the sequences reported to be pancreatic lipase might more likely be the orthologues of hPLRP1 or hPLRP2 in those species. 相似文献
19.
The organism Acinetobacter sp. RKJ12 is capable of utilizing 2-chloro-4-nitrobenzoic acid (2C4NBA) as a sole source of carbon, nitrogen, and energy. In the degradation of 2C4NBA by strain RKJ12, various metabolites were isolated and identified by a combination of chromatographic, spectroscopic, and enzymatic activities, revealing a novel assimilation pathway involving both oxidative and reductive catabolic mechanisms. The metabolism of 2C4NBA was initiated by oxidative ortho dehalogenation, leading to the formation of 2-hydroxy-4-nitrobenzoic acid (2H4NBA), which subsequently was metabolized into 2,4-dihydroxybenzoic acid (2,4-DHBA) by a mono-oxygenase with the concomitant release of chloride and nitrite ions. Stoichiometric analysis indicated the consumption of 1 mol O(2) per conversion of 2C4NBA to 2,4-DHBA, ruling out the possibility of two oxidative reactions. Experiments with labeled H(2)(18)O and (18)O(2) indicated the involvement of mono-oxygenase-catalyzed initial hydrolytic dechlorination and oxidative denitration mechanisms. The further degradation of 2,4-DHBA then proceeds via reductive dehydroxylation involving the formation of salicylic acid. In the lower pathway, the organism transformed salicylic acid into catechol, which was mineralized by the ortho ring cleavage catechol-1,2-dioxygenase to cis, cis-muconic acid, ultimately forming tricarboxylic acid cycle intermediates. Furthermore, the studies carried out on a 2C4NBA(-) derivative and a 2C4NBA(+) transconjugant demonstrated that the catabolic genes for the 2C4NBA degradation pathway possibly reside on the ~55-kb transmissible plasmid present in RKJ12. 相似文献
20.
M E Lowe 《The Journal of biological chemistry》1992,267(24):17069-17073
In this study, the essential serine residue and 2 other amino acids in human pancreatic triglyceride lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) were tested for their contribution to the enzyme's catalytic site or interfacial binding site. By site-specific mutagenesis of the cDNA for human pancreatic lipase, amino acid substitutions were made at Ser153, His264, and Asp177. The mutant cDNAs were expressed in transfected COS-1 cells. Both the medium and the cells were examined for the presence of pancreatic lipase by Western blot analysis. The activity of the expressed proteins against triolein and the interfacial binding was measured. Proteins with mutations in Ser153 were secreted by the cells and bound to interfaces but had no detectable activity. Changing His264 to a leucine or Asp177 to an asparagine also produced inactive lipase. Substituting glutamic acid for Asp177 produced an active protein. These results demonstrate that Ser153 is involved in the catalytic site of pancreatic lipase and is not crucial for interfacial binding. Moreover, the essential roles of His264 and Asp177 in catalysis were demonstrated. A Ser-His-Asp catalytic triad similar to that present in serine proteases is present in human pancreatic lipase. 相似文献