首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background  

The use of small interfering RNA (siRNA) molecules in animals to achieve double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful method of sequence-specific gene knockdown. As DNA-based expression of short hairpin RNA (shRNA) for RNAi may offer some advantages over chemical and in vitro synthesised siRNA, a number of vectors for expression of shRNA have been developed. These often feature polymerase III (pol. III) promoters of either mouse or human origin.  相似文献   

3.
4.
5.

Background  

Short hairpin RNA (shRNA) encoded within an expression vector has proven an effective means of harnessing the RNA interference (RNAi) pathway in mammalian cells. A survey of the literature revealed that shRNA vector construction can be hindered by high mutation rates and the ensuing sequencing is often problematic. Current options for constructing shRNA vectors include the use of annealed complementary oligonucleotides (74 % of surveyed studies), a PCR approach using hairpin containing primers (22 %) and primer extension of hairpin templates (4 %).  相似文献   

6.
RNA interference (RNAi) has become an essential technology for functional gene analysis. Its success, however, depends on the effective expression of RNAi-inducing small double-stranded interfering RNA molecules (siRNAs) in target cells. In many cell types, RNAi can be achieved by transfection of chemically synthesised siRNAs, which results in transient knockdown of protein expression. Expression of double-stranded short hairpin RNA (shRNA) provides another means to induce RNAi in cells that are hard to transfect. To facilitate the generation of stable, conditional RNAi cell lines, we have developed novel one- and two-component vector GATEWAY-compatible lentiviral tetracycline-regulated RNAi (GLTR) systems. The combination of a modified RNA-polymerase-III-dependent H1 RNA promoter (designated ‘THT’) for conditional shRNA expression with different lentiviral delivery vectors allows (1) the use of fluorescent proteins for colour-coded combinatorial RNAi or for monitoring RNAi induction (pGLTR-FP), (2) selection of transduced cells (pGLTR-S), and (3) the generation of conditional cell lines using a one vector system (pGLTR-X). All three systems were found to be suitable for the analysis of essential genes, such as CDC27, a component of the mitotic ubiquitin ligase APC/C, in cell lines and primary human cells.  相似文献   

7.
8.
The discovery of RNA interference (RNAi), an evolutionary conserved gene silencing mechanism that is triggered by double stranded RNA, has led to tremendous efforts to use this technology for basic research and new RNA therapeutics. RNAi can be induced via transfection of synthetic small interfering RNAs (siRNAs), which results in a transient knockdown of the targeted mRNA. For stable gene silencing, short hairpin RNA (shRNA) or microRNA (miRNA) constructs have been developed. In mammals and humans, the natural RNAi pathway is triggered via endogenously expressed miRNAs. The use of modified miRNA expression cassettes to elucidate fundamental biological questions or to develop therapeutic strategies has received much attention. Viral vectors are particularly useful for the delivery of miRNA genes to specific target cells. To date, many viral vectors have been developed, each with distinct characteristics that make one vector more suitable for a certain purpose than others. This review covers the recent progress in miRNA-based gene-silencing approaches that use viral vectors, with a focus on their unique properties, respective limitations and possible solutions. Furthermore, we discuss a related topic that involves the insertion of miRNA-target sequences in viral vector systems to restrict their cellular range of gene expression. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

9.

Background  

The use of exogenous small interfering RNAs (siRNAs) for gene silencing has quickly become a widespread molecular tool providing a powerful means for gene functional study and new drug target identification. Although considerable progress has been made recently in understanding how the RNAi pathway mediates gene silencing, the design of potent siRNAs remains challenging.  相似文献   

10.

Characteristics of DIRS-1 Mediated Knock-Downs

We have previously shown that the most abundant Dictyostelium discoideum retroelement DIRS-1 is suppressed by RNAi mechanisms. Here we provide evidence that both inverted terminal repeats have strong promoter activity and that bidirectional expression apparently generates a substrate for Dicer. A cassette containing the inverted terminal repeats and a fragment of a gene of interest was sufficient to activate the RNAi response, resulting in the generation of ~21 nt siRNAs, a reduction of mRNA and protein expression of the respective endogene. Surprisingly, no transitivity was observed on the endogene. This was in contrast to previous observations, where endogenous siRNAs caused spreading on an artificial transgene. Knock-down was successful on seven target genes that we examined. In three cases a phenotypic analysis proved the efficiency of the approach. One of the target genes was apparently essential because no knock-out could be obtained; the RNAi mediated knock-down, however, resulted in a very slow growing culture indicating a still viable reduction of gene expression.

Advantages of the DIRS-1–RNAi System

The knock-down system required a short DNA fragment (~400 bp) of the target gene as an initial trigger. Further siRNAs were generated by RdRPs since we have shown some siRNAs with a 5’-triphosphate group. Extrachromosomal vectors facilitate the procedure and allowed for molecular and phenotypic analysis within one week. The system provides an efficient and rapid method to reduce protein levels including those of essential genes.  相似文献   

11.
12.

Background  

The use of small interfering RNAs (siRNAs) to silence target gene expression has greatly facilitated mammalian genetic analysis by generating loss-of-function mutants. In recent years, high-throughput, genome-wide screening of siRNA libraries has emerged as a viable approach. Two different methods have been used to generate short hairpin RNA (shRNA) libraries; one is to use chemically synthesized oligonucleotides, and the other is to convert complementary DNAs (cDNAs) into shRNA cassettes enzymatically. The high cost of chemical synthesis and the low efficiency of the enzymatic approach have hampered the widespread use of screening with shRNA libraries.  相似文献   

13.
14.
15.
RNA interference (RNAi) denotes sequence-specific mRNA degradation induced by short interfering double-stranded RNA (siRNA) and has become a revolutionary tool for functional annotation of mammalian genes, as well as for development of novel therapeutics. The practical applications of RNAi are usually achieved by expressing short hairpin RNAs (shRNAs) or siRNAs in cells. However, a major technical challenge is to simultaneously express multiple siRNAs to silence one or more genes. We previously developed pSOS system, in which siRNA duplexes are made from oligo templates driven by opposing U6 and H1 promoters. While effective, it is not equipped to express multiple siRNAs in a single vector. Gibson DNA Assembly (GDA) is an in vitro recombination system that has the capacity to assemble multiple overlapping DNA molecules in a single isothermal step. Here, we developed a GDA-based pSOK assembly system for constructing single vectors that express multiple siRNA sites. The assembly fragments were generated by PCR amplifications from the U6-H1 template vector pB2B. GDA assembly specificity was conferred by the overlapping unique siRNA sequences of insert fragments. To prove the technical feasibility, we constructed pSOK vectors that contain four siRNA sites and three siRNA sites targeting human and mouse β-catenin, respectively. The assembly reactions were efficient, and candidate clones were readily identified by PCR screening. Multiple β-catenin siRNAs effectively silenced endogenous β-catenin expression, inhibited Wnt3A-induced β-catenin/Tcf4 reporter activity and expression of Wnt/β-catenin downstream genes. Silencing β-catenin in mesenchymal stem cells inhibited Wnt3A-induced early osteogenic differentiation and significantly diminished synergistic osteogenic activity between BMP9 and Wnt3A in vitro and in vivo. These findings demonstrate that the GDA-based pSOK system has been proven simplistic, effective and versatile for simultaneous expression of multiple siRNAs. Thus, the reported pSOK system should be a valuable tool for gene function studies and development of novel therapeutics.  相似文献   

16.

Background  

Since prion gene-knockout mice do not contract prion diseases and animals in which production of prion protein (PrP) is reduced by half are resistant to the disease, we hypothesized that bovine animals with reduced PrP would be tolerant to BSE. Hence, attempts were made to produce bovine PRNP (bPRNP) that could be knocked down by RNA interference (RNAi) technology. Before an in vivo study, optimal conditions for knocking down bPRNP were determined in cultured mammalian cell systems. Factors examined included siRNA (short interfering RNA) expression plasmid vectors, target sites of PRNP, and lengths of siRNAs.  相似文献   

17.
Small interfering RNAs (siRNAs) have become the most powerful and widely used gene silencing reagents for reverse functional genomics and molecular therapeutics. The key challenge for achieving effective gene silencing in particular for the purpose of the therapeutics is primarily dependent on the effectiveness and specificity of the RNAi targeting sequence. However, only a limited number of siRNAs is capable of inducing highly effective and sequence-specific gene silencing by RNA interference (RNAi) mechanism. In addition, the efficacy of siRNA-induced gene silencing can only be experimentally measured based on inhibition of the target gene expression. Therefore, it is important to establish a fully robust and comparative validating system for determining the efficacy of designed siRNAs. In this study, we have developed a reliable and quantitative reporter-based siRNA validation system that consists of a short synthetic DNA fragment containing an RNAi targeting sequence of interest and two expression vectors for targeting reporter and triggering siRNA expression. The efficacy of the siRNAs is measured by their abilities to inhibit expression of the targeting reporter gene with easily quantified readouts including enhanced green fluorescence protein (EGFP) and firefly luciferase. Using fully analyzed siRNAs against human hepatitis B virus (HBV) surface antigen (HBsAg) and tumor suppressor protein p53, we have demonstrated that this system could effectively and faithfully report the efficacy of the corresponding siRNAs. In addition, we have further applied this system for screening and identification of the highly effective siRNAs that could specifically inhibit expression of mouse matrix metalloproteinase-7 (MMP-7), Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), and human serine/threonine kinase AKT1. Since only a readily available short synthetic DNA fragment is needed for constructing this novel reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective siRNAs but also implicates in the use of RNAi for studying novel gene function in mammals.  相似文献   

18.

Background  

Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs.  相似文献   

19.
RNA interference (RNAi) has been exploited as a reverse genetic tool for functional genomics in the nonmodel species strawberry (Fragaria × ananassa) since 2006. Here, we analysed for the first time different but overlapping nucleotide sections (>200 nt) of two endogenous genes, FaCHS (chalcone synthase) and FaOMT (O‐methyltransferase), as inducer sequences and a transitive vector system to compare their gene silencing efficiencies. In total, ten vectors were assembled each containing the nucleotide sequence of one fragment in sense and corresponding antisense orientation separated by an intron (inverted hairpin construct, ihp). All sequence fragments along the full lengths of both target genes resulted in a significant down‐regulation of the respective gene expression and related metabolite levels. Quantitative PCR data and successful application of a transitive vector system coinciding with a phenotypic change suggested propagation of the silencing signal. The spreading of the signal in strawberry fruit in the 3′ direction was shown for the first time by the detection of secondary small interfering RNAs (siRNAs) outside of the primary targets by deep sequencing. Down‐regulation of endogenes by the transitive method was less effective than silencing by ihp constructs probably because the numbers of primary siRNAs exceeded the quantity of secondary siRNAs by three orders of magnitude. Besides, we observed consistent hotspots of primary and secondary siRNA formation along the target sequence which fall within a distance of less than 200 nt. Thus, ihp vectors seem to be superior over the transitive vector system for functional genomics in strawberry fruit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号