首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Changes in the microtubular cytoskeleton during meiosis and cytokinesis in hybrid moth orchids were studied by indirect immunofluorescence. Lagging chromosomes not incorporated into telophase nuclei after first meiotic division behave as small extra nuclei. Events in the microtubular cycle associated with these micronuclei are similar to and synchronous with those of the principal nuclei. During second meiotic division the micronuclei trigger formation of minispindles which are variously oriented with respect to the two principal spindles. After meiosis, radial systems of microtubules measure cytoplasmic domains around each nucleus in the coenocyte. Cleavage planes are established in regions where opposing radial arrays interact and the cytoplasm cleaved around micronuclei is proportionately smaller than that around the four principal nuclei. These observations clearly demonstrate that nuclei in plant cells are of fundamental importance in microtubule organization and provide strong evidence in support of our recently advanced hypothesis that division planes in simultaneous cytokinesis following meiosis are determined by establishment of cytoplasmic domains via radial systems of nuclear-based microtubules rather than by division sites established before nuclear division.Abbreviations DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - MTOC microtubule organizing center - PBS phosphate buffered saline - PPB preprophase band of microtubules  相似文献   

2.
ABSTRACT

Indirect immunofluorescence performed using sections of actively growing maize root apices fixed and then embedded in low-melting-point Steedman's wax has proved efficient in revealing the arrangements and reorganizations of motility-related cytoskeletal elements which are associated with root cell development and tissue differentiation. This powerful, yet relatively simple, technique shows that specific rearrangements of both microtubular (MT) and actin microfilament (MF) arrays occur in cells as they leave the meristem and traverse the transitional region interpolated between meristem and elongation region. Cytoskeletal and growth analyses have identified the transition zone as critical for both cell and root development; it is in this zone that cell growth is channelled, by the cytoskeleton, into a strictly polarized mode which enables root tips to extend rapidly through the soil in search of water and nutrients. An integrated cytoskeletal network is crucial for both the cytomorphogenesis of individual cells and the overall morphogenesis of the plant body. The latter process can be viewed as a reflection of the tight control which cytoskeletal networks exert not only over cell division planes in the cells within meristematic apices but also over the orientation of cell growth in the meristem and elsewhere. Endoplasmic MTs interconnecting the plasma membrane with the nucleus are suggested to be involved in cell division control; they may also act as a two-way cytoskeletal communication channel for signals passing to and fro between the extracellular environment and the genome. Moreover, the dynamism of endoplasmic MTs exerts direct effects on chromatin structure and the accompanying nuclear architecture and hence can help exert a cellular level of control over cell growth and cell cycle progression. Because the inherent dynamic instability of MTs depends on the concentration of tubulin dimers within the cytoplasm, we propose that when asymmetric cell division occurs, it will result in two daughter cells which differ in the turnover rates of their MTs. This phenomenon could be responsible for different cell fates of daughter plant cells produced by such cell divisions.  相似文献   

3.
Abstract: The control of maize root growth by root cap mucilage and extracellular calcium (Ca) was examined. Special attention was paid to the influence of these factors on cellular aspects of root growth, such as cell shape and organization of the microtubular (MT) cytoskeleton. Externally supplied Ca impaired the transition of early post-mitotic cells from a more-or-less apolar mode of expansion to a strictly anisotropic mode of elongation accompanied by their more rapid growth. However, this inhibitory effect of Ca was not associated with any re-arrangement of the cortical MTs, their transverse arrays, with respect to the root axis, being maintained under these conditions. Root mucilage, collected from donor root caps and placed around root tips, exerted a similar effect on cell shapes as did externally supplied Ca. In contrast, roots grown in a medium of low Ca content, or from which the root cap mucilage was continually removed, had more elongated cell shapes in their post-mitotic growth regions when compared to the control roots. These findings are consistent with a notion that Ca is present in the root cap mucilage in physiologically relevant amounts and can mediate growth responses in both the PIG region and the apical part of the elongation zone. Integrating several known effects of Ca ions on growth at the root apex, a hypothesis is proposed that a Ca-mediated and MT-independent control of cell growth in the PIG region might be involved in morphogenetic root movements (e.g. gravitropism), and that root growth responses could be initiated by an asymmetric distribution of extracellular calcium, or root cap slime, around the growing root tip.  相似文献   

4.
The cytoskeletal architecture of Trypanosoma brucei   总被引:1,自引:0,他引:1  
The cytoskeleton of Trypanosoma brucei has been analyzed by the high-resolution technique of quick-freeze deep-etch rotary-shadowing electron microscopy. The study provides detailed structural information on the subpellicular array of microtubules, the flagellum, and the interaction of these 2 major structures of the trypanosomal cytoskeleton with each other. The subpellicular microtubules closely interact both with the cell membrane and with each other. At the anterior tip of the cell they converge into a tightly closed structure, whereas at the posterior end the microtubular array remains open ended. The microtubular array is involved also in forming the opening of the flagellar pocket. The microtubular array interacts with the paraflagellar rod of the flagellum through a dense meshwork of fibers that are anchored on the microtubular surface with one end and within the paraflagellar rod structure with the other. The highly ordered, 3-dimensional network of the paraflagellar rod itself is connected tightly to the microtubular axoneme of the flagellum through a regular array of fleur-de-lis-shaped linking structures.  相似文献   

5.
利用改进的冰冻切片法结合间接免疫荧光标记技术对甘蔗茎尖细胞有丝分裂过程中微管骨架的变化进行了研究。结果表明,在甘蔗茎尖细胞有丝分裂过程中存在4种循序变化的典型微管列阵,即周质微管、早前期微管带、纺锤体微管及成膜体微管。同时,还观察到在各种典型微管列阵相互转变过程中存在各种微管列阵的过渡状态。甘蔗茎尖正在伸长的幼叶部位细胞的周质微管主要为与细胞伸长轴相垂直的横向周质微管:茎尖幼叶部位伸长缓慢细胞的微管主要为纵向及斜向排列的周质微管,在甘蔗茎尖幼叶基部初生增粗分生组织处,横向、斜向、纵向及随机排列的周质微管列阵均有分布。在少数分裂前期的细胞中,发现细胞具有2条早前期微管带,其具体功能还不清楚。表明甘蔗茎尖细胞微管列阵的变化与许多双子叶植物及部分单子叶植物具有共同的变化规律,进一步证明微管骨架的周期性变化在植物中具有普遍性。  相似文献   

6.
The ability to establish cell polarity is crucial to form and function of an individual cell. Polarity underlies critical processes during cell development, such as cell growth, cell division, cell differentiation and cell signalling. Interphase cytoplasmic microtubules in tip-growing fission yeast cells have been shown to play a particularly important role in regulating cell polarity. By placing proteins that serve as spatial cues in the cell cortex of the expanding tip, microtubules determine the site where exocytosis, and therefore growth, takes place. Transport and the targeting of exocytotic vesicles to the very tip depend on the actin cytoskeleton. Recently, endoplasmic microtubules have been identified in tip-growing root hairs, which are an experimental system for plant cell growth. Here, we review the data that demonstrate involvement of microtubules in hair elongation and polarity of the model plants Medicago truncatula and Arabidopsis thaliana. Differences and similarities between the microtubule organization and function in these two species are discussed and we compare the observations in root hairs with the microtubule-based polarity mechanism in fission yeast.  相似文献   

7.
The effects of the antitumor drug taxol on the microtubular axonemes of the heliozoon Actinophrys sol have been investigated. The drug induces polymerization of microtubules as shown by a large increase in the length and number of microtubular arrays. The interaction between microtubules and microtubule-associated proteins is also affected, with the result that the normal geometric patterning within the microtubular arrays is disturbed. This is due to the loss or inactivation of long intermicrotubule links. As a result, arms lose their rigidity. Because the drug stabilizes polymerized microtubules, C-shaped profiles and other signs of poor microtubule preservation are absent in taxol-treated cells.  相似文献   

8.
Summary. In Lavatera thuringiaca, kariokinesis and simultaneous cytokinesis during the meiotic division of microsporogenesis follow a procedure similar to that which takes place in the majority of members of the class Angiospermae. However, chondriokinesis occurs in a unique way found only in species from the family Malvaceae. Chondriokinesis in such species is well documented, but the relationship between the tubulin cytoskeleton and rearrangement of cell organelles during meiosis in L. thuringiaca has not been precisely defined so far. In this study, the microtubular cytoskeleton was investigated in dividing microsporocytes of L. thuringiaca by immunofluorescence. The meiotic stages and positions of cell organelles were identified by staining with 4′,6-diamidino-2-phenylindole. We observed that, during prophase I and II, changes in microtubular cytoskeleton configurations have unique features, which have not been described for other plant species. At the end of prophase I, organelles (mostly plastids and mitochondria) form a compact envelope around the nucleus, and the subsequent phases of kariokinesis take place within this arrangement. At this point of cell division, microtubules surround the organelle envelope and separate it from the peripheral cytoplasm, which is devoid of plastids and mitochondria. In telophase I, two newly formed nuclei are tightly surrounded by the cell organelle envelopes, and these are separated by the phragmoplast. Later, when the phragmoplast disappears, cell organelles still surround the nuclei but also move a little, starting to occupy the place of the disappearing phragmoplast. After the breakup of tetrads, the radial microtubule system is well developed, and cell organelles can still be observed as a dense envelope around the nuclei. At a very late stage of sporoderm development, the radial microtubule system disappears, and cell organelles become gradually scattered in the cytoplasm of the microspores. Using colchicines, specific inhibitors of microtubule formation, we investigated the relationship between the tubulin cytoskeleton and the distribution of cell organelles. Our analysis demonstrates that impairment of microtubule organization, which constitutes only a single component of the cytoskeleton, is enough to disturb typical chondriokinesis in L. thuringiaca. This indicates that microtubules (independent of microfilaments) are responsible for the reorganization of cell organelles during meiotic division. Correspondence: D. Tchórzewska, Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.  相似文献   

9.
The symbiotic infection of the model legume Medicago truncatula by Sinorhizobium meliloti involves marked root hair curling, a stage where entrapment of the microsymbiont occurs in a chamber from which infection thread formation is initiated within the root hair. We have genetically dissected these early symbiotic interactions using both plant and rhizobial mutants and have identified a M. truncatula gene, HCL, which controls root hair curling. S. meliloti Nod factors, which are required for the infection process, induced wild-type epidermal nodulin gene expression and root hair deformation in hcl mutants, while Nod factor induction of cortical cell division foci was reduced compared to wild-type plants. Studies of the position of nuclei and of the microtubule cytoskeleton network of hcl mutants revealed that root hair, as well as cortical cells, were activated in response to S. meliloti. However, the asymmetric microtubule network that is typical of curled root hairs, did not form in the mutants, and activated cortical cells did not become polarised and did not exhibit the microtubular cytoplasmic bridges characteristic of the pre-infection threads induced by rhizobia in M. truncatula. These data suggest that hcl mutations alter the formation of signalling centres that normally provide positional information for the reorganisation of the microtubular cytoskeleton in epidermal and cortical cells.  相似文献   

10.
The inhibitory action of 0.1 microM auxin (IAA) on maize root growth was closely associated with a rapid and complete disintegration of the microtubular (MT) cytoskeleton, as visualized by indirect immunofluorescence of tubulin, throughout the growth region. After 30 min of this treatment, only fluorescent spots were present in root cells, accumulating either around nuclei or along cell walls. Six h later, in addition to some background fluorescence, dense but partially oriented oblique or longitudinal arrays of cortical MTs (CMTs) were found in most growing cells of the root apex. After 24 h of treatment, maize roots had adapted to the auxin, as inferred from the slowly recovering elongation rate and from the reassembly of a dense and well-ordered MT cytoskeleton which showed only slight deviations from that of the control root cells. Taxol pretreatment (100 microM, 24 h) prevented not only the rapid auxin-mediated disintegration of the MT cytoskeleton but also a reorientation of the CMT arrays, from transversal to longitudinal. The only tissue to show MTs in their cells throughout the auxin treatment was the epidermis. Significant resistance of transverse CMT arrays in these cells towards auxin was confirmed using a higher auxin concentration (100 microM, 24 h). The latter auxin dose also revealed inter-tissue-specific responses to auxin: outer cortical cell files reoriented their CMTs from the transversal to longitudinal orientation, whereas inner cortical cell files lost their MTs. This high auxin-mediated response, associated with the swelling of root apices, was abolished with the pretreatment of maize root with taxol.  相似文献   

11.
Summary Aspects of megasporogenesis in Arabidopsis thaliana have been investigated using a variety of histochemical techniques to visualize general cell organization, DNA and callose in whole ovules and sections by bright field, fluorescence, differential interference contrast and scanning electron microscopy. The microtubular cytoskeleton has been studied using immunofluorescence localization of tubulin in sections and whole cells. The observations deviate from reports of preceding studies in that the megasporocyte was found to undergo both meiotic divisions followed by simultaneous cytokinesis (i.e. without an intermediate dyad stage) to give a multiplanar tetrad of megaspores. This represents a variation of monosporic development not previously described. Polarized distribution of organelles prior to meiosis ensures that the functional megaspore receives the largest share. Aberrant wall formation is common between degenerating megaspores. Localized callose deposition in the tetrad separates these cells from the active megaspore. Their pattern of degeneration and displacement is extremely flexible within the embryo sac space. The microtubular cytoskeleton is extensive and largely cytoplasmic, as distinct from cortical, throughout megasporogenesis. In the megasporocyte, megaspores and one-nucleate embryo sac, randomly oriented microtubules throughout the cells may serve to maintain cytoplasmic integrity and position organelles. Numerous microtubules (MTs) associate closely with the nucleus and some radiate from it, perhaps functioning in nuclear positioning. During meiosis MTs are restricted to the spindle configurations and later to the phragmoplasts which form between daughter nuclei. The lack of interphase cortical arrays suggests that the role of internal influences on cell shape is small.  相似文献   

12.
Mutants at the BOTERO1 locus are affected in anisotropic growth in all non-tip-growing cell types examined. Mutant cells are shorter and broader than those of the wild type. Mutant inflorescence stems show a dramatically reduced bending modulus and maximum stress at yield. Our observations of root epidermis cells show that the cell expansion defect in bot1 is correlated with a defect in the orientation of the cortical microtubules. We found that in cells within the apical portion of the root, which roughly corresponds to the meristem, microtubules were loosely organized and became much more highly aligned in transverse arrays with increasing distance from the tip. Such a transition was not observed in bot1. No defect in microtubule organization was observed in kor-1, another mutant with a radial cell expansion defect. We also found that in wild-type root epidermal cells, cessation of radial expansion precedes the increased alignment of cortical microtubules into transverse arrays. Bot1 roots still show a gravitropic response, which indicates that ordered cortical microtubules are not required for differential growth during gravitropism. Interestingly, the fact that in the mutant, these major changes in microtubule organization cause relatively subtle changes in cell morphology, suggest that other levels of control of growth anisotropy remain to be discovered. Together, these observations suggest that BOT1 is required for organizing cortical microtubules into transverse arrays in interphase cells, and that this organization is required for consolidating, rather than initiating, changes in the direction of cell expansion.  相似文献   

13.
Müller S 《Protoplasma》2012,249(2):239-253
Coordinated cell divisions and cell expansion are the key processes that command growth in all organisms. The orientation of cell divisions and the direction of cell expansion are critical for normal development. Symmetric divisions contribute to proliferation and growth, while asymmetric divisions initiate pattern formation and differentiation. In plants these processes are of particular importance since their cells are encased in cellulosic walls that determine their shape and lock their position within tissues and organs. Several recent studies have analyzed the relationship between cell shape and patterns of symmetric cell division in diverse organisms and employed biophysical and mathematical considerations to develop computer simulations that have allowed accurate prediction of cell division patterns. From these studies, a picture emerges that diverse biological systems follow simple universal rules of geometry to select their division planes and that the microtubule cytoskeleton takes a major part in sensing the geometric information and translates this information into a specific division outcome. In plant cells, the division plane is selected before mitosis, and spatial information of the division plane is preserved throughout division by the presence of reference molecules at a distinct region of the plasma membrane, the cortical division zone. The recruitment of these division zone markers occurs multiple times by several mechanisms, suggesting that the cortical division zone is a highly dynamic region.  相似文献   

14.
D. S. Domozych 《Protoplasma》1987,136(2-3):170-182
Summary Phycoplast-mediated cytokinesis in the primitive green algal flagellate,Carteria crucifera, has been examined by electron microscopy. The key developmental foci during cell division are mobile centriole-MTOCs which control mitotic spindle formation, the establishment of the plane of cytokinesis, the initiation of the cytokinetic furrow, the formation of the phycoplast and the formation of morphogenetic microtubular arrays. The cytokinetic cleavage mechanism entails an ingressive furrowing closely associated with a prolific network of internuclear endoplasmic reticulum. Dictyosome activity is limited to the cleavage initiation zone and is responsible for the production of wall precursor-containing vesicles. Dictyosome materials do not contribute directly to the growing furrow edge. Potassium antimonate staining patterns reveal the cytokinetic ER as a storage/control site for calcium during cytokinesis. Discussion of possible models concerning this cytokinetic mechanism is presented.  相似文献   

15.
Microspores and pollen of Brassica napus were cultured under conditions leading to embryo formation. Concomitant changes in cytoskeletal configurations were analysed. The microfilamental cytoskeleton exhibited a loss of polarity in embryogenic cells but cytochalasin treatment revealed that microfilaments do not influence embryogenesis. Two embryogenic pathways started from microspores and were either characterized by turned division planes or by division when the nucleus was in the cell centre. In both cases microtubules clearly exhibited new arrangements and likely played a major role in newly induced symmetrical division. In pollen, embryogenic development started in the vegetative cell provided the generative cell was arrested near the pollen wall. The concomitant disappearance of defined microtubular arrays is likely to be responsible for the positioning of the cell.  相似文献   

16.
Aluminum (Al) is a major factor that limits plant growth in acid soils. It causes a cessation of root growth and changes in root morphology suggesting a role of the root cytoskeleton as a target of Al-toxicity. Here we report a rapid effect of Al on the microtubular cytoskeleton of the suspension tobacco cell lines BY-2 and VBI-0. Viability studies showed that the cells were more sensitive to Al during exponential phase as compared to stationary cells. During the first hours of exposure, Al induced the formation of additional bundles of cortical microtubules (cMTs), whereas the thickness of the individual bundles decreased. Prolonged exposure resulted in disorientation of cMTs. These changes of cMTs preceded the decrease of cell viability by several hours and were accompanied by an increase in the levels of alpha-tubulin (in its tyrosinated form) and elements of the tubulin-folding chaperone CCT. These findings suggest that the microtubular cytoskeleton is one of the early targets of Al toxicity.  相似文献   

17.
18.
M. Wright  A. Moisand  L. Mir 《Protoplasma》1979,100(3-4):231-250
Summary Flagellation ofPhysarum polycephalum amoebae (Myxomycete) involves the formation around the two kinetosomes of a flagellar apparatus leading to a modification in the shape of the amoeba and its nucleus. A tridimensional ultrastructural model of the flagellar apparatus is proposed, based upon observation of the isolated nucleo-flagellar apparatus complex. The flagellar apparatus is composed of a non-microtubular structure (the posterior para-kinetosomal structure), five microtubular arrays and two flagella: a long anterior flagellum and a short flagellum directed backwards. The asymmetry of the flagellar apparatus is due mainly to the presence of the posterior para-kinetosomal structure on the right side of the posterior kinetosome and of the two asymmetrical microtubular arrays 3 and 4. Thus, the flagellar apparatus is right-handed. This asymmetry implies also some spatial constraints on two other microtubular arrays (2 and 5). Except in the case of the microtubular array 1 which links the proximal end of the anterior kinetosome to the nuclear membrane, the number of microtubules of each microtubular array seems to be well defined: 39, 5–6, 7–9, and 2+2 for the microtubular arrays 2, 3, 4, and 5 respectively. All the elements of the nucleo-flagellar apparatus complex are linked either directly or indirectly through bridges. Furthermore, the microtubules which composed the microtubular array 3 are linked through bridges while the microtubules of the microtubular arrays 2, 3, and 4 seem to be linked through a reticulate material. All these spatial relationships lead to a great cohesion of the nucleo-flagellar apparatus complex which appears to be a well defined structure. This suggests thatPhysarum amoebal flagellation can be a promising system to study the morphogenesis of an eucaryotic cell.Abbreviations PIPES Piperazine-N,N-bis [2-ethane-sulfonic acid] - EGTA [Ethylenebis(oxyethylenenitrile)]tetraacetic acid - DMSO Dimethyl sulfoxide  相似文献   

19.
P. Xu  D. Liu  W. Jiang 《Biologia Plantarum》2009,53(2):387-390
We have investigated the effects of cadmium on the microtubular (MT) cytoskeleton in the root tip cells of Allium sativum L. using indirect immunofluorescence microscopy. Cd affected the mechanisms controlling the organization of MT cytoskeleton, as well as tubulin assembly/disassembly processes. Cd induced the formation of abnormal MT arrays, consisting of discontinuous wavy MTs or short MT fragments at the cell periphery. Cadmium caused irregular nuclear disorder in cells where the MT organization and function was disturbed. Furthermore, with increased Cd concentration and duration of treatment the MTs depolymerized more severely, the frequency of abnormal cell increased and the mitotic index decreased progressively. The above findings showed that MT cytoskeleton is one of target sites of Cd toxicity in root tip cells.  相似文献   

20.
本文应用FLUTAX直接荧光标记和抗α-微管蛋白抗体免疫荧光标记.显示了土壤纤毛虫草丛土毛虫(Territricha stramenticola)的皮层纤毛器微管胞器.其中纤毛器基部微管按口围带、波动膜、额腹横棘毛、左右缘棘毛、背触毛等纤毛器图式分布和定位,口围带和波动膜基部含小膜微管托架、小膜附属微管和波动膜微管骨架网;额腹横棘毛基部含前纵微管束、后纵微管束和横微管束:左、右缘棘毛基部含前纵微管束、后纵微管束、横微管束及后微管芽;背触毛基部含前纵微管束、后纵微管柬。横棘毛基部含有较发达的横微管束,缘棘毛基部含后微管芽及其横微管束的定位可能具有本种纤毛虫细胞的特异性。纤毛器微管胞器在细胞表膜下分化形成的基部微管及其微管层使细胞的运动纤毛器与强固的微管骨架结构网相联系.其微管胞器的建构可能是细胞对土壤生存环境的一种适应.是细胞运动胞器的功能活动与环境相互作用的结果。形态发生中,老口围带微管是逐步进行更新的:老棘毛微管胞器对新结构的发生和形成具有定位和物质贡献的作用.并且老结构在新结构分化和成熟期间也经历了行使相应的生理功能及逐渐退化和失去功能的过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号