首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of 36 pure isomers (chlorine numbers 1 to 5) of polychlorinated biphenyls examined, 23 compounds were metabolized by Alcaligenes sp. strain Y42, and 33 compounds were metabolized by Acinetobacter sp. strain P6. The major pathway of many polychlorinated biphenyl isomers examined was considered to proceed through 2',3'-dihydro-2',3'-diol compounds, concomitant dehydrogenated 2',3'-dihydroxy compounds, subsequently the 1',2'-meta-cleavage compounds (chlorinated derivatives of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acids), and then chlorobenzoic acids. The meta-cleavage products were usually converted to chlorobenzoic acids upon further incubation in many polychlorinated biphenyls, but they accumulated specifically in the metabolism of 2,4'-, 2,4,4'-, and 2,5,4'-chlorobiphenyls, which are all chlorinated at the 2,4'-position in the molecules in common. Dihydroxy compounds accumulated mainly in the metabolism of 2,6-, 2,3,6-, 2,4,2',5'-, 2,5,2',5'-, and 2,4,5,2',5'-chlorobiphenyls by Acinetobacter sp. P6. The 2,3,2',3'-, 2,3,2',5'-, and 2,4,5,2',3'-chlorobiphenyls, which are chlorinated at the 2,3-position of one of the rings, were metabolized in a different fashion. Two major metabolites of a chlorobenzoic acid and an unknown compound accumulated always in the metabolism of this group of polychlorinated biphenyls. 2,4,6-Trichlorobiphenyl was metabolized quite differently between the two organisms. Alcaligenes sp. Y42 metabolized this compound very slowly to trichlorobenzoic acid by the major oxidative route. In contrast, Acinetobacter sp. P6 metabolized it to a trihydroxy compound via a dihydroxy compound.  相似文献   

2.
Destruction of polychlorinated biphenyls (PCBs) by strain-destructors Rhodococcus sp. B7a and Rhodococcus sp. G12a has been studied. It was shown that these strains destruct 78-95% of PCB mixture containing tri-hexa-chlorinated biphenyls. Rhodococcus destruct all components of the mixture of tri-, tetra-, penta-, and hexa-chlorinated biphenyls without accumulation of toxic chlorinated metabolites. The studied bacteria destruct PCB that are the most stable for oxidation, such as 2,5,2',5'-CB; 3,4,3',4'-CB; and 2,4,5,2',4',5'-CB. The most perspective strains are R. rubber P25, Rhodococcus sp. B7a and Rhodococcus sp. G12a whose metabolic potential can be used for biotechnological refinement of the environment from highly toxic pollutants.  相似文献   

3.
Previous investigations showed that three classes of haloaromatic compounds (HACs; chlorobenzoates, chlorophenols, and chlorobenzenes) enhanced the reductive dechlorination of Aroclor 1248, judging from the overall extent of reduction in Cl atoms on the biphenyl. In the present study, we further investigated the kind of polychlorinated biphenyl (PCB) congeners involved in the enhanced dechlorination by four isomers belonging to each class (2,3-, 2,5-, 2,3,5-, and 2,4,6-chlorobenzoates; 2,3-, 3,4-, 2,5-, and 2,3,6-chlorophenols; and 1,2-, 1,2,3-, 1,2,4-, and penta-chlorobenzenes). Although the PCB congeners involved in the enhanced dechlorination varied with the HACs, the enhancement primarily involved paradechlorination of the same congeners (2,3,4'-, 2,3,4,2'- plus 2,3,6,4'-, 2,5,3',4'- plus 2,4,5,2',6'-, and 2,3,6,2',4'- chlorobiphenyls), regardless of the HACs. These congeners are known to have low threshold concentrations for dechlorination. To a lesser extent, the enhancement also involved meta dechlorination of certain congeners with high threshold concentrations. There was no or less accumulation of 2,4,4'- and 2,5,4'-chlorobiphenyls as final products under HAC amendment. Although the dechlorination products varied, the accumulation of orthosubstituted congeners, 2-, 2,2'-, and 2,6-chlorobiphenyls, was significantly higher with the HACs, indicating a more complete dechlorination of the highly chlorinated congeners. Therefore, the present results suggest that the enhanced dechlorination under HAC enrichment is carried out through multiple pathways, some of which may be universal, regardless of the kind of HACs, whereas others may be HAC-specific.  相似文献   

4.
Involvement of plasmids in total degradation of chlorinated biphenyls.   总被引:34,自引:20,他引:14       下载免费PDF全文
Acinetobacter sp. strain P6 has previously been reported to utilize biphenyl (BP) and chlorinated BPs, with accumulation of corresponding chlorobenzoic acids. Arthrobacter sp. strain M5 was isolated as a contaminant in the culture of Acinetobacter sp. strain P6 growing on 4-chlorobiphenyl and showed properties similar to P6 in the degradation of chlorinated BPs. Both strains harbored an identical plasmid of 53.7 megadaltons. These strains spontaneously lost the ability to utilize BP and 4-chlorobiphenyl with high frequency (4 to 8%) after overnight growth in nutrient broth. The BP- derivatives could not regain the BP-assimilating ability (reversion frequency, less than 10(-9) per cell per generation) but retained the plasmid with small, detectable deletions. BP+ P6 cells grown on BP or benzoate oxidized BP and 2,3-dihydroxybiphenyl and produced meta cleavage compounds from the latter compound (lambda max, 434 nm) and also from catechol (lambda max, 375 nm) through the meta pathway. On the other hand, benzoate-grown BP- segregants totally lost the BP-metabolizing activities and oxidized catechol through the ortho pathway. A combined culture of the chlorinated BP-dissimilating P6 or M5 strain (harboring the putative 53.7-megadalton plasmid specifying conversion of chlorobiphenyls to chlorobenzoic acids) and genetically constructed mono- or dichlorobenzoate-utilizing pseudomonads (harboring plasmids encoding complete utilization of mono- or dichlorobenzoates) allowed greater than 98% utilization of mono- and dichlorobiphenyls, with the liberation of equivalent amounts of chloride ions.  相似文献   

5.
Polychlorinated biphenyls, polychlorinated biphenylols and polybrominated biphenyls inhibited both rabbit muscle phosphorylase a and phosphorylase b (1,4-alpha-D-glucan:orthophosphate alpha-d-glucosyltransferase, EC 2.4.1.1). The degree of inhibition was dependent upon the relative hydrophobicity of the compounds and steric hinderance. 2,4,5,2',4',5'-Hexabromobiphenyl and Firemaster BP-6 were the most effective inhibitors (Ki, 15 . 10(-6) M). Phosphorylase b was inhibited by compounds of all three groups. 2,4,5,2',4',5'-Hexachlorobiphenyl and 2,4,5,2',4',5'-hexabromobiphenyl did not significantly inhibit phosphorylase a. All of the compounds inhibited phosphorylase a less than phosphorylase b, except 2',3',4',5,5'-pentachloro-2-biphenylol, which was equally effective on each enzyme. Kinetic analysis showed the inhibition was non-competitive and mixed. The results indicate that the compounds bind to hydrophobic site(s) on phosphorylase, access to which is limited by phosphorylation of serine 24.  相似文献   

6.
Molecular genetics and evolutionary relationship of PCB-degrading bacteria   总被引:20,自引:0,他引:20  
Biphenyl-utilizing soil bacteria are ubiquitously distributed in the natural environment. They cometabolize a variety of polychlorinated biphenyl (PCB) congeners to chlorobenzoic acids through a 2,3-dioxygenase pathway, or alternatively through a 3,4-dioxygenase system. Thebph genes coding for the metabolism of biphenyl have been cloned from several pseudomonads. The biochemistry and molecular genetics of PCB degradation are reviewed and discussed from the viewpoint of an evolutionary relationship.Abbreviations BP biphenyl - bph BP/PCB-degradative gene - 23DHBP 2,3-dihydroxybiphenyl - HPDA 2-hydroxy-6-oxo-6-phenylhexa 2,4-dienoic acid - KF707 P. pseudoalcaligenes strain KF707 - LB400 Pseudomonas sp. strain LB400 - PCB polychlorinated biphenyls - Q1 P. paucimobilis strain Q1tod; toluene catabolic gene  相似文献   

7.
Bacterial degradation of biphenyl and polychlorinated biphenyls proceeds by a well-studied pathway which produces benzoate and 2-hydroxypent-2,4-dienoate (or, in the case of polychlorinated biphenyls, the chlorinated derivatives of these compounds). Pseudomonas cepacia P166 utilizes 4-chlorobiphenyl for growth and produces 4-chlorobenzoate as a central intermediate. In this study we found that strain P166 further transforms 4-chlorobenzoate to 4-chlorocatechol, which is mineralized by a meta cleavage pathway. Key metabolites which we identified include the meta cleavage product (5-chloro-2-hydroxymuconic semialdehyde), 5-chloro-2-hydroxymuconate, 5-chloro-2-oxopent-4-enoate, 5-chloro-4-hydroxy-2-oxopentanoate, and chloroacetate. Chloroacetate accumulated transiently, and slow but stoichiometric dehalogenation was observed.  相似文献   

8.
Previous studies indicated that Alcaligenes eutrophus H850 attacks a different spectrum of polychlorinated biphenyl (PCB) congeners than do most PCB-degrading bacteria and that novel mechanisms of PCB degradation might be involved. To delineate this, we have investigated the differences in congener selectivity and metabolite production between H850 and Corynebacterium sp. strain MB1, an organism that apparently degrades PCBs via a 2,3-dioxygenase. H850 exhibited a superior ability to degrade congeners via attack on 2-, 2,4-, 2,5-, or 2,4,5-chlorophenyl rings in PCBs but an inferior ability to degrade congeners via attack on a 4-chlorophenyl ring. Reactivity preferences were also reflected in the products formed from unsymmetrical PCBs; thus MB1 attacked the 2,3-chlorophenyl ring of 2,3,2',5'-tetrachlorobiphenyl to yield 2,5-dichlorobenzoic acid, while H850 attacked the 2,5-chlorophenyl ring to yield 2,3-dichlorobenzoic acid and a novel metabolite, 2',3'-dichloroacetophenone. Furthermore, H850 oxidized 2,4,5,2',4',5'-hexachlorobiphenyl, a congener with no adjacent unsubstituted carbons, to 2',4',5'-trichloroacetophenone. The atypical congener selectivity pattern and novel metabolites produced suggest that A. eutrophus H850 may degrade certain PCB congeners by a new route beginning with attack by some enzyme other than the usual 2,3-dioxygenase.  相似文献   

9.
Previous studies indicated that Alcaligenes eutrophus H850 attacks a different spectrum of polychlorinated biphenyl (PCB) congeners than do most PCB-degrading bacteria and that novel mechanisms of PCB degradation might be involved. To delineate this, we have investigated the differences in congener selectivity and metabolite production between H850 and Corynebacterium sp. strain MB1, an organism that apparently degrades PCBs via a 2,3-dioxygenase. H850 exhibited a superior ability to degrade congeners via attack on 2-, 2,4-, 2,5-, or 2,4,5-chlorophenyl rings in PCBs but an inferior ability to degrade congeners via attack on a 4-chlorophenyl ring. Reactivity preferences were also reflected in the products formed from unsymmetrical PCBs; thus MB1 attacked the 2,3-chlorophenyl ring of 2,3,2',5'-tetrachlorobiphenyl to yield 2,5-dichlorobenzoic acid, while H850 attacked the 2,5-chlorophenyl ring to yield 2,3-dichlorobenzoic acid and a novel metabolite, 2',3'-dichloroacetophenone. Furthermore, H850 oxidized 2,4,5,2',4',5'-hexachlorobiphenyl, a congener with no adjacent unsubstituted carbons, to 2',4',5'-trichloroacetophenone. The atypical congener selectivity pattern and novel metabolites produced suggest that A. eutrophus H850 may degrade certain PCB congeners by a new route beginning with attack by some enzyme other than the usual 2,3-dioxygenase.  相似文献   

10.
Biodegradability of commercial polychlorobiphenyl mixtures (Kaneclors, KC 200 to KC 500) and their metabolic products by Acinetobacter sp. strain P6 were studied by gas chromatography-mass spectrometry analysis. KC 200 (primarily dichlorobiphenyls) rapidly degraded after 4 h of incubation with the P6 resting cells, showing predominant accumulation of monochlorobenzoic acids. KC 300 (primarily trichlorobiphenyls) were also degraded after 4 h of incubation, producing various metabolic intermediates such as mono- and dichlorobenzoic acids, dihydroxy biphenyl compounds with two and three chlorines, and the ring meta-cleavage compounds with two and three chlorines. KC 400 (primarily tetrachlorobiphenyls) were also susceptible to biodegradation by the same organism. Chlorobenzoic acids (chlorine number 1 to 3), dihydroxy compounds (chlorine number 2 to 4), and the ring meta-cleavage compounds (chlorine number 2 to 3) were observed as the products from KC 400. In addition to such products, a large amount of unknown compounds with two chlorines in the molecule, which can be derived from 2,3,2',3' - or 2,3,2',5'-tetrachlorobiphenyls or both, accumulated. In contrast to KC 200, KC 300, and KC 400, KC 500 (primarily pentachlorobiphenyls) were resistant to degradation and hardly metabolized. Only dihydroxy compounds of certain pentachlorobiphenyls were detected.  相似文献   

11.
A Gram-negative bacterium, named LY402, was isolated from contaminated soil. 16S rDNA sequencing and measurement of the physiological and biochemical characteristics identified it as belonging to the genus Enterobacter. Degradation experiments showed that LY402 had the ability to aerobically transform 79 of the 91 major congeners of Aroclor 1242, 1254, and 1260. However, more interestingly, the strain readily degraded certain highly chlorinated and recalcitrant polychlorinated biphenyls (PCBs). Almost all the tri- and tetra-chlorobiphenyls (CBs), except for 3,4,3',4'-CB, were degraded in 3 days, whereas 73% of 3,4,3',4'-, 92% of the penta-, 76% of the hexa-, and 37% of the hepta-CBs were transformed after 6 days. In addition, among 12 octa-CBs, 2,2',3,3',5,5',6,6- CB was obviously degraded, and 2,2',3,3',4,5,6,6'- and 2,2',3,3',4,5,5',6'-CB were slightly transformed. In a metabolite analysis, mono- and di-chlorobenzoic acids (CBAs) were identified, and parts of them were also transformed by strain LY402. Analysis of PCB degradation indicated that strain LY402 could effectively degrade PCB congeners with chlorine substitutions in both ortho- and para-positions. Consequently, this is the first report of an Enterobacteria that can efficiently degrade both low and highly chlorinated PCBs under aerobic conditions.  相似文献   

12.
Destruction of polychlorinated biphenyls (PCBs) by strain-destructors Rhodococcus sp. B7a and Rhodococcus sp. G12a has been studied. It was shown that these strains destruct 78–95% of PCB mixture containing tri-hexa-chlorinated biphenyls. Rhodococcus destruct all components of the mixture of tri-, tetra-, penta-, and hexa-chlorinated biphenyls without accumulation of toxic chlorinated metabolites. The studied bacteria destruct PCB that are the most stable for oxidation, such as 2,5,2′,5′-CB; 3,4,3′,4′-CB; and 2,4,5,2′,4′,5′-CB. The most perspective strains are R. rubber P25, Rhodococcus sp. B7a and Rhodococcus sp. G12a whose metabolic potential can be used for biotechnological refinement of the environment from highly toxic pollutants.  相似文献   

13.
The transformation of 20 polychlorinated biphenyls (PCBs) through the meta-cleavage pathway by recombinant Escherichia coli cells expressing the bphEFGBC locus from Burkholderia cepacia LB400 and the bphA genes from different sources was compared. The analysis of PCB congeners for which hydroxylation was observed but no formation of the corresponding yellow meta-cleavage product demonstrated that only lightly chlorinated congeners including one tetrachlorobiphenyl (2,2',4,4'-CB) were transformed into their corresponding yellow meta-cleavage products. Although many other tetrachlorobiphenyls (2, 2',5,5'-CB, 2,2',3,5'-CB, 2,4,4',5-CB, 2,3',4',5-CB, 2,3',4,4'-CB) and one pentachlorobiphenyl (2,2',4,5,5'-CB) tested were depleted from resting cell suspensions, no yellow meta-cleavage products were observed. For most of these congeners, dihydrodiol compounds accumulated as the endproducts, indicating that the bphB-encoded biphenyl-2,3-dihydrodiol-2,3-dehydrogenase is a key limiting step for further degradation of highly chlorinated congeners. These results suggest that engineering the biphenyl dioxygenase alone is insufficient for an improved removal of PCB. Rather, improved degradation of PCBs is more likely to be achieved with recombinant strains containing metabolic pathways not only specifically engineered for expanding the initial dioxygenation but also for the mineralization of PCBs.  相似文献   

14.
Coplanar polychlorinated biphenyls included in dioxin-like compounds are bio-accumulated and adversely affect wildlife and human health. Although many researchers have studied the metabolism of PCBs, there have been few reports of the in vitro metabolism of 3,3',4,4',5-pentachlorobiphenyl (PCB126), despite the fact that it has the highest toxicity among PCB congeners. Cytochrome P450 (CYP) 1A1 proteins can metabolize some dioxins and PCBs by hydroxylation, but the activities of human and rat CYP1A1 proteins are very different. The mechanism remains unclear. From our results, rat CYP1A1 metabolized PCB126 into 4-OH-3,3',4',5-tetrachlorobiphenyl and 4-OH-3,3',4',5,5'-pentachlorobiphenyl, but human CYP1A1 did not metabolize. Homology models of the two CYP proteins, and docking studies, showed that differences in the amino acid residues forming their substrate-binding cavities led to differences in the size and shape of the cavities; only the cavity of rat CYP1A1 allowed PCB126 close enough to the haem to be metabolized. Comparison of the amino acid residues of other mammalian CYP1A1 proteins suggested that rats have a unique metabolism of xenobiotics. Our results suggest that it is necessary to be careful in human extrapolation of toxicity data estimated by using the rat as an experimental animal, especially in the case of compounds metabolized by CYP1A1.  相似文献   

15.
Summary A 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial strain, Xanthobacter sp. CP, was isolated after enrichment in aerated soil columns. A limited number of chlorinated phenols and chlorinated phenoxyalkanoic acids with an even number of carbon atoms in the side chain served as substrates for growth, although whole cells exhibited oxygen uptake with a wide range of those compounds. The maximal growth rate with 2,4-D was 0.13·h-1 at a growth yield of 0.1 g biomass/g 2,4-D. Chloride ions were released quantitatively from 2,4-D and related chlorinated aromatic compounds which served as growth substrates. No by-products of 2,4-D metabolism were detected in oxygen-sufficient cultures of Xanthobacter sp. CP and catechols were cleaved exclusively by catechol 1,2-dioxygenase.  相似文献   

16.
The mechanism of uptake of benzoic and 2,4-dichlorobenzoic acid (2,4-DCBA) by Alcaligenes denitrificans BRI 3010 and BRI 6011 and Pseudomonas sp. strain B13, three organisms capable of degrading various isomers of chlorinated benzoic acids, was investigated. In all three organisms, uptake of benzoic acid was inducible. For benzoic acid uptake into BRI 3010, monophasic saturation kinetics with apparent K(infm) and V(infmax) values of 1.4 (mu)M and 3.2 nmol/min/mg of cell dry weight, respectively, were obtained. For BRI 6011, biphasic saturation kinetics were observed, suggesting the presence of two uptake systems for benzoic acid with distinct K(infm) (0.72 and 5.3 (mu)M) and V(infmax) (3.3 and 4.6 nmol/min/mg of cell dry weight) values. BRI 3010 and BRI 6011 accumulated benzoic acid against a concentration gradient by a factor of 8 and 10, respectively. A wide range of structural analogs, at 50-fold excess concentrations, inhibited benzoic acid uptake by BRI 3010 and BRI 6011, whereas with B13, only 3-chlorobenzoic acid was an effective inhibitor. For BRI 3010 and BRI 6011, the inhibition by the structural analogs was not of a competitive nature. Uptake of benzoic acid by BRI 3010 and BRI 6011 was inhibited by KCN, by the protonophore 3,5,3(prm1), 4(prm1)-tetrachlorosalicylanilide (TCS), and, for BRI 6011, by anaerobiosis unless nitrate was present, thus indicating that energy was required for the uptake process. Uptake of 2,4-DCBA by BRI 6011 was constitutive and saturation uptake kinetics were not observed. Uptake of 2,4-DCBA by BRI 6011 was inhibited by KCN, TCS, and anaerobiosis even if nitrate was present, but the compound was not accumulated intracellularly against a concentration gradient. Uptake of 2,4-DCBA by BRI 6011 appears to occur by passive diffusion into the cell down its concentration gradient, which is maintained by the intracellular metabolism of the compound. This process could play an important role in the degradation of xenobiotic compounds by microorganisms.  相似文献   

17.
We compared the metabolism of eight di- and trichlorobiphenyls by eight bacterial strains chosen to represent a broad range of degradative activity against polychlorinated biphenyls (PCBs). The PCB congeners used were 2,3-, 2,3′-, 2,4′-, 3,3′-, 2,3,3′-, 2,4,4′-, 2,5,3′-, and 3,4,2′-chlorobiphenyl. The bacterial strains used wereCorynebacterium sp. MB1,Alcaligenes strainsA. eutrophus H850 andA. faecalis Pi434, andPseudomonas strains LB400 and H1130,P. testosteroni H430 and H336, andP. cepacia H201. The results indicated that both the relative rates of primary degradation of PCBs and the choice of the ring attacked were dependent on the bacterial strain used. The bacterial strains exhibited considerable differences in their relative reactivity preferences for attack on mono- and dichlorophenyl groups and in the degree to which the attack was affected by the chlorine substitution pattern on the nonreacting ring. For MB1 the reactivity pattern was 3-≥4-≫2-chlorophenyl with no attack on 2,4- or 2,5-chlorophenyl groups. This strain was relatively insensitive to the chlorine substitution pattern on the nonreacting ring. Strains H1130, H430, H201, and Pi434 exhibited the same reactivity preferences as MB1, but for these strains (and for all others tested) the chlorination pattern on the nonreacting ring had a strong effect. For strain H336 the reactivity preference was 4-≥2->2,4-≥3-chlorophenyl, with no evidence of attack on 2,5-chlorophenyl rings. For strains H850 and LB400 the relative reactivity was 2->2,5->3-≫2,4->4-chlorophenyl. On this basis we propose that the eight bacterial strains represent four distinct classes of biphenyl/PCB-dioxygenase activity. The types of products formed were largely strain-independent and were determined primarily by the chlorine substitution pattern on the reacting ring. When the reacting ring was an unsubstituted phenyl or a 2-chlorophenyl group, the products were chlorobenzoic acids in high yields; for a 3-chlorophenyl ring, both chlorobenzoic acids and chloroacetophenones in moderate yields; and for a 4- or 2,4-chlorophenyl group, chlorobenzoic acids in low yields with an apparent accumulation ofmeta ring-fission product. Strains H850 and LB400 were able to degrade the 3-chlorobenzoic acid that they produced from the degradation of 2,3′-chlorobiphenyl. We conclude that despite differences among strains in the specificity of the initial dioxygenase, the specificities of the enzymes responsible for the subsequent degradation to chlorobenzoic acid and/or chloroacetophenone are quite similar for all strains.  相似文献   

18.
Biphenyl dioxygenase from Burkholderia (Pseudomonas) sp. strain LB400 catalyzes the first reaction of a pathway for the degradation of biphenyl and a broad range of chlorinated biphenyls (CBs). The effect of chlorine substituents on catalysis was determined by measuring the specific activity of the enzyme with biphenyl and 18 congeners. The catalytic oxygenase component was purified and incubated with individual CBs in the presence of electron transport proteins and cofactors that were required for enzyme activity. The rate of depletion of biphenyl from the assay mixture and the rate of formation of cis-biphenyl 2,3-dihydrodiol, the oxidation product, were almost equal, indicating that the assay accurately measured enzyme-specific activity. Four classes of CBs were defined based on their oxidation rates. Class I contained 3-CB and 2,5-CB, which gave rates that were approximately twice that of biphenyl. Class II contained 2,5,3',4'-CB, 2,3,2',5'-CB, 2,3,4,5-CB, 2,3,2',3'-CB, 2,4, 5,2',5'-CB, 2,5,3'-CB, 2,5,4'-CB, 2-CB, and 3,4,5-CB, which gave rates that ranged from 97 to 35% of the biphenyl rate. Class III contained only 2,3,4,2',5'-CB, which gave a rate that was 4% of the biphenyl rate. Class IV contained 2,4,4'-CB, 2,4,2',4'-CB, 3,4,5, 2'-CB, 3,4,5,3'-CB, 3,5,3',5'-CB, and 3,4,5,2',5'-CB, which showed no detectable depletion. Rates were not significantly correlated with the aqueous solubilities of the CBs or the number of chlorine substituents on the rings. Oxidation products were detected for all class I, II, and III congeners and were identified as chlorinated cis-dihydrodiols for classes I and II. The specificity of biphenyl dioxygenase for the CBs examined in this study was determined by the relative positions of the chlorine substituents on the aromatic rings rather than the number of chlorine substituents on the rings.  相似文献   

19.
5-[1'-[3"-Aminoacetyl-2"-methyl-6",8"-dihalosubstitutedquinazolin-4"(3"H)-onyl]-thiosemicarbazido]-2-oxo/thiobarbituric acids 3a-3h and 5-[2'-amino-5'-[3"-aminomethylene-2"-methyl-6",8"-dihalosubstitutedquinazolin-4"(3"H)-onyl]-1',3',4'-thiadiazol-2'-yl]-2-oxo/thiobarbituric acid 5a-5h were prepared by incorporating 1-[3'-aminoacetyl-2'-methyl-6",8"-dihalosubstituted-quinazolin-4'(3'H)-onyl]-thiosemicarbazides 2a-2d and 2-amino-5-[3'-aminomethylene-2'-methyl-6',8'-dihalosubstituted-quinazolin-4'(3'H)-onyl]-1,3,4-thiadiazoles 4a-4 h respectively at 5(th) position of 2-oxo/thiobarbituric acids (via Mannich reaction). All the newly synthesized compounds were screened for their anti-convulsant activity in MES and PTZ models and were compared with standard drugs phenytoin sodium and sodium valproate. Interestingly, these compounds were found to be devoid of sedative and hypnotic activities when tested. Out of the compounds studied, the most active compound 5h, that is 5-[2'-amino-5'-[3"-aminomethylene-2"-methyl-6",8"-dibromoquinazolin-4"(3"H)-onyl]-1',3',4'-thiadiazol-2'-yl]-2-thiobarbituric acid showed activity (90%) more potent than the standard drug.  相似文献   

20.
In order to account for the origin of the sulphur atom in methyl sulphones derived from polychlorinated biphenyls (PCB), groups of mice were treated with 2,4'-5-trichlorobiphenyl and [35S]cysteine or [35S]methionine, respectively. Control animals received the labelled amino acids only. The radioactive substances extracted from lung tissue were characterized by partition between hexane and sulphuric acid, thin-layer radiochromatography (TLRC), gas chromatography (GC) and mass fragmentography (MF). In lung extracts of both experimental groups sulphuric acid soluble metabolites were present: Their Rf-values on TLRC were identifical with that of 4-methylsulphonyl-2,4'-5-trichlorobiphenyl and their identity was confirmed by GC and GC-MF, which also indicated the presence of a minor sulphone isomer. The study shows that both cysteine and methionine could function as donors of the sulphur atom in the methyl sulphone metabolites derived from PCB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号