首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clethra barbinervis (Ericales), Cucumis sativus, and Lycopersicon esculentum were grown in soils collected from six different vegetation sites (cedar, cypress, larch, red pine, bamboo grass, and Italian ryegrass), and morphology and colonization preference of arbuscular mycorrhizal (AM) fungi were investigated by microscopic observation and PCR detection. C. barbinervis consistently formed Paris-type AM throughout the sites. C. sativus formed both Arum- and Paris-type AM with high occurrence of Arum-type AM. L. esculentum also formed both Arum- and Paris-type AM but with high occurrence of Paris-type AM. AM diversity within the same plant species was different among the sites. Detected AM diversity from AM spores in different site soils did not consistently reflect AM fungal diversity seen in test plants. Detected families were different, depending on test plants grown even in the same soil. AM fungi belonging to Glomaceae were consistently detected from roots of all test plants throughout the sites. Almost all the families were detected from roots of C. barbinervis and L. esculentum. On the other hand, only two or three families of AM fungi (Archaeosporaceae and/or Paraglomaceae and Glomaceae) but not two other families (Acaulosporaceae and Gigasporaceae) were detected from roots of C. sativus, indicating strong colonization preference of AM fungi to C. sativus among test plants. This study demonstrated that host plant species strongly influenced the colonization preference of AM fungi in the roots.  相似文献   

2.
An in vitro plant regeneration system was established from the spores of Pteris vittata and identification of its tolerance, and accumulation of gametophytes and callous, to arsenic (As) and copper (Cu) was investigated. The highest frequency (100%) of callus formation was achieved from gametophyte explants treated with 0.5 mg l?1 6-benzylaminopurine (6-BA) + 0.5 mg l?1 gibberellin acid (GA). Furthermore, sporophytes were differentiated from the callus tissue derived from gametophyte explants on MS medium supplemented with 0.5 mg l?1 6-BA, 0.5–1.0 mg l?1 GA and additional 300 mg l?1 lactalbumin hydrolysate (LH) for 4 weeks. The optimum combination of ½ MS + 1.0 mg l?1 GA + 0.5 mg l?1 6-BA + 300 mg l?1 LH promoted sporophyte formation on 75 ± 10% of the callus. Every callus derived from gametophyte explants could achieve 3–4 sporophytes. The in vitro growth of gametophyte and callus was accelerated in the medium containing Na3AsO4 lower than 0.5 mM, but this growth was inhibited with 2 mM Na3AsO4. And with the increase of Na3AsO4 in the culture medium from 0 to 2 mM, the As accumulation in gametophytes and callus increased and achieved a level of 763.3 and 315.4 mg kg?1, respectively. Gametophytes and calluses transplanted to culture medium, supplemented with different concentrations of CuSO4, are similar to those in Na3AsO4, and the Cu accumulation in gametophytes could achieve 7,940 mg kg?1 when gametophytes were subcultured in medium containing 3 mM CuSO4. These results suggested that the high efficiency propagation system could be a useful and rapid means to identify other heavy metal tolerance and accumulation. Further, the regeneration ability of callus made it possible for genetic transformation of this fern.  相似文献   

3.
4.
Leaf samples were collected from 40 accessions of Chenopodium spp. and assessed for six heavy metals (Fe, Zn, Cu, Ni, Cr and Cd) accumulation to explore the use of Chenopodium for phytoextraction of heavy metals. The results suggest that Chenopodium spp. have the ability to accumulate large quantities of heavy metals in the leaf tissues even when they are present in low concentrations in the soil. C. quinoa is a better accumulator of Ni, Cr and Cd than the rest of the species, while C. album accessions are good copper accumulators. Bioconcentration factor for chromium ranged from 0.36 (C. album “Chandanbathua”) to 6.57 (C. quinoa Ames 13719) with 13 accessions of C. quinoa scoring above the mean value. High heritability coupled with high genetic advance was recorded for Ni, Cr and Cd, which indicated a major role of additive gene action in the inheritance of these characters. Zinc showed significant positive association with iron (0.351**), nickel (0.659**), chromium (0.743**) and cadmium (0.288**). Nickel was significantly and negatively associated with copper (−0.663**), while it was positively and significantly correlated with chromium (0.682**) and cadmium (0.461**). Considering the accumulation efficiency of Chenopodium spp. with respect to heavy metals, this genus should be further explored for decontamination of metal polluted soils, with plant breeding playing an important role in evolving new plant types with higher capacity of heavy metal accumulation.  相似文献   

5.
6.
Hafeel KM 《Mycorrhiza》2004,14(3):213-219
Arbuscular mycorrhizal (AM) fungi in the genus Archaeospora (family Archaeosporaceae) contain both monomorphic and dimorphic species. The synanamorphism is often hard to discern without ontogenetic observations. Here, the spore ontogeny of Ar. trappei is reported from single species pot culture studies. The sporogenous hypha swelled up to a terminal sporiferous saccule and produced a lateral spore primordium on its neck. The saccule expanded fully before the spore primordium emerged. The saccule transferred its contents into the expanding spore and collapsed while wall differentiation continued inside the spore. The spore wall of Ar. trappei differentiated sequentially, in discrete steps, as in Acaulosporaceae members. In contrast, Ar. trappei produced a simplified spore wall in which the components differed in chemical and physical characteristics from those of the Acaulosporaceae members. Ontogenetic studies confirmed Ar. trappei to be monomorphic and producing acaulosporoid spores. The fungus is a new record to New Zealand.  相似文献   

7.
Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.  相似文献   

8.
The level of fluctuating asymmetry (FA), which is defined as random deviations from perfect bilateral symmetry in the morphological traits of an organism, increases with increasing developmental instability, and it may be used as an indicator of environmental and/or genetic stresses. This study attempted to relate FA levels in the opercular plates of the barnacle Amphibalanus (Balanus) amphitrite with shore height and body trace metal concentrations. Barnacles were collected from both low and mid shores at six coastal locations with various degrees of marine pollution in Hong Kong. Four opercular traits, namely scutum length, tergum length, scutum width, tergum width were measured in the specimen while concentrations of five common trace metals (Cd, Cu, Cr, Mn and Zn) were determined in their body tissues using inductively coupled plasma-atomic emission spectrophotometry. Among the four traits, only tergum length and scutum width fulfilled the assumption of FA while their measurement errors were low. Across all sites, mid-shore A. amphitrite consistently exhibited a significantly higher FA level in scutum width than that in low-shore barnacles, but FA levels in tergum length were similar between the two shore heights. These results suggested that FA was trait-dependent, and mid-shore barnacles were possibly under high physical stress, such as desiccation and high temperature, leading to high developmental instability. Although no positive association was observed between FA and metal contamination in low-shore A. amphitrite, FA level in tergum length significantly increased with decreasing body concentration of manganese (Mn) in these barnacles. Such a negative relationship may be explained by the mechanism of bioaccumulation and physiological role of Mn in A. amphitrite with respect to the formation of barnacle shell plates. Handling editor: T. P. Crowe  相似文献   

9.
Huang Y  Hatayama M  Inoue C 《Planta》2011,234(6):1275-1284
In some plant species, various arsenic (As) species have been reported to efflux from the roots. However, the details of As efflux by the As hyperaccumulator Pteris vittata remain unknown. In this study, root As efflux was investigated for different phosphorus (P) supply conditions during or after a 24-h arsenate uptake experiment under hydroponic growth conditions. During an 8-h arsenate uptake experiment, P-supplied (P+) P. vittata exhibited much greater arsenite efflux relative to arsenate uptake when compared with P-deprived (P–) P. vittata, indicating that arsenite efflux was not proportional to arsenate uptake. In the As efflux experiment following 24 h of arsenate uptake, arsenate efflux was also observed with arsenite efflux in the external solution. All the results showed relatively low rates of arsenate efflux, ranging from 5.4 to 16.1% of the previously absorbed As, indicating that a low rate of arsenate efflux to the external solution is also a characteristic of P. vittata, as was reported with arsenite efflux. In conclusion, after 24 h of arsenate uptake, both P+ and P– P. vittata loaded/effluxed similar amounts of arsenite to the fronds and the external solution, indicating a similar process of xylem loading and efflux for arsenite, with the order of the arsenite concentrations being solution ≪ roots ≪ fronds.  相似文献   

10.
The arbuscular mycorrhizal (AM) morphology of three host plant species inoculated with single and mixed fungal culture and the distribution of AM fungal species in roots of the hosts treated with a mixed culture of AM fungi were determined. The aim was to investigate the effect of host plants and AM fungi on AM morphology of coexisting plant species. Noncolonized rooted cuttings of Hedera rhombea (Miq) Bean, Rubus parvifolius L., and Rosa multiflora Thunb. were inoculated with five fungal species as single and mixed culture inocula. The fungal species used were Gigaspora rosea and Scutellospora erythropa, previously isolated from H. rhombea; Acaulospora longula and Glomus etunicatum from R. parvifolius; and Glomus claroideum from both plant species. A few hyphal and arbusculate coils were seen in the mixed culture-inoculated roots of R. parvifolius; all fungal treatments produced this Paris-type AM in H. rhombea and Arum-type AM in R. parvifolius, and R. multiflora indicates that AM morphology is strongly controlled by the identity of the host plants used in this study. AM fungal rDNA was extracted separately from roots of each replicate plant species inoculated with the mixed fungal culture, amplified, cloned, sequenced, and analyzed to determine the AM fungal species and their respective proportions in roots of each plant species. Glomus etunicatum and G. claroideum of the family Glomaceae generally occurred more frequently in R. parvifolius and R. multiflora, which form Arum-types, whereas S. erythropa, of the family Gigasporaceae, was the most frequently detected species in H. rhombea, which produced Paris-type AM. Although the genotype of the plant species used appears to determine the AM morphologies formed, there was preferential association between the hosts and AM fungal inoculants.  相似文献   

11.
Byrne K  Mitchell DT 《Mycorrhiza》2004,14(1):31-36
An investigation was carried out on the mycorrhizal colonisation, growth and nutrition of two members of the Ericaceae in close proximity to an arbuscular mycorrhizal (AM) association. This was undertaken by separating mycorrhizal (EM) and non-mycorrhizal (NEM) Erica cinerea and Vaccinium macrocarpon from AM (inoculated by Glomus mosseae) and non-mycorrhizal (NAM) Plantago lanceolata using a 30 µm nylon mesh in a sand culture/pot system. Ericoid mycorrhizal colonisation by Hymenoscyphus ericae on root systems of E. cinerea and V. macrocarpon was in the range 14–22% and 58–69%, respectively. The presence of AM P. lanceolata had no effect on the ericoid mycorrhizal colonisation of E. cinerea and V. macrocarpon. NEM E. cinerea showed reductions in shoot biomass and shoot nitrogen concentrations after exposure to AM P. lanceolata after incubations of 6 and 9 weeks but there were no differences in dry mass, length, and nitrogen and phosphorus concentrations of the root systems between the treatment combinations. Reductions were also found, after incubations of 6 and 9 weeks, in shoot dry mass, leaf area and shoot nitrogen concentrations of NEM V. macrocarpon in the presence of AM P. lanceolata but no changes occurred in the length and dry mass of the root systems. There were no differences in maximum photosynthesis in V. macrocarpon between treatment combinations but NEM V. macrocarpon in the presence of AM P. lanceolata had the lowest transpiration rates and stomatal conductance and the highest nitrogen- and phosphorus-use efficiencies compared with the other treatment combinations. These results are discussed in relation to the type of interaction found in these compatible and incompatible mycorrhizal associations.  相似文献   

12.
Effects of different zinc concentrations on antioxidant responses in the roots of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated under hydroponic conditions. Growth of NHE was inhibited significantly when Zn concentration was >-50 μM, whereas high Zn concentrations were beneficial for HE growth, and 500 μM Zn induced a significant increase in the root biomass and reducing activity. Malondialdehyde content and electrical conductivity of the NHE roots increased significantly; however, no changes were observed in HE when the Zn concentration was >10 μM, suggesting a severe damage to the membrane of the NHE roots. Proline content in NHE roots increased rapidly, whereas it was low in HE roots even at high Zn concentrations, suggesting that proline may not play an important role in Zn hyperaccumulation. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) in NHE roots increased significantly when the Zn concentration was >10 μM and decreased sharply when the Zn concentration was >-500 μM. For roots of HE, in contrast, no significant changes were observed in SOD, CAT, APX, and GPX activities at low Zn concentrations, whereas a high Zn concentration (≥500 μM) led to a marked enzyme activation, which was in accordance with Zn accumulation in shoots. The results suggest that antioxidant enzymes were important for Zn detoxification in NHE at low Zn concentrations (10–250 μM) and were more critical for Zn detoxification and hyperaccumulation in HE under elevated Zn concentrations (500–1000 μM).  相似文献   

13.
The interaction between Trichoderma pseudokoningii (Rifai) 511, 2212, 741A, 741B and 453 and the arbuscular mycorrhizal fungi Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe BEG12 and Gigaspora rosea Nicolson & Schenck BEG9 were studied in vitro and in greenhouse experiments. All T. pseudokoningii strains inhibited the germination of G. mosseae and Gi. rosea except the strain 453, which did not affect the germination of Gi. rosea. Soluble exudates and volatile substances produced by all T. pseudokoningii strains inhibited the spore germination of G. mosseae. The germination of Gi. rosea spores was inhibited by the soluble exudates produced by T. pseudokoningii 2212 and 511, whereas T. pseudokoningii 714A and 714B inhibited the germination of Gi. rosea spores by the production of volatile substances. The strains of T. pseudokoningii did not affect dry matter and percentage of root length colonization of soybean inoculated with G. mosseae, except T. pseudokoningii 2212, which inhibited both parameters. However, all T. pseudokoningii strains decreased the shoot dry matter and the percentage of AM root length colonization of soybean inoculated with Gi. rosea. The saprotrophic fungi tested seem to affect AM colonization of root by effects on the presymbiotic phase of the AM fungi. No influence of AM fungi on the number of CFUs of T. pseudokoningii was found. The effect of saprotrophic fungi on AM fungal development and function varied with the strain of the saprotrophic species tested.  相似文献   

14.
Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals   总被引:7,自引:0,他引:7  
Use of plants, with hyperaccumulating ability or in association with soil microbes including the symbiotic fungi, arbuscular mycorrhiza (AM), are among the most common biological methods of treating heavy metals in soil. Both hyperaccumulating plants and AM fungi have some unique abilities, which make them suitable to treat heavy metals. Hyperaccumulator plants have some genes, being expressed at the time of heavy metal pollution, and can accordingly localize high concentration of heavy metals to their tissues, without showing the toxicity symptoms. A key solution to the issue of heavy metal pollution may be the proper integration of hyperaccumulator plants and AM fungi. The interactions between the soil microbes and the host plant can also be important for the treatment of soils polluted with heavy metals.  相似文献   

15.
16.
A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.  相似文献   

17.
Two fungi collected from submerged woody debris were found to represent hitherto undescribed species of the ascomycete genera Clohiesia and Paraniesslia. They are described as Clohiesia curvispora sp. nov. and Paraniesslia aquatica sp. nov. based on morphological characters. Clohiesia curvispora is characterized by immersed ascomata under a clypeus, and unitunicate, cylindrical asci containing one-celled, curved, elongate-fusiform ascospores. Paraniesslia aquatica is characterized by small, superficial, setose ascomata, and unitunicate, clavate asci containing verrucose, brown ascospores. Each species is illustrated with light micrographs and compared with similar taxa in this article.  相似文献   

18.
Yang X  Chen H  Xu W  He Z  Ma M 《Plant cell reports》2007,26(10):1889-1897
The callus of Pteris vittata was induced from gametophytes generated from spores in vitro, and grew rapidly with periodical medium change. Arsenic tolerance and accumulation of P. vittata callus were compared with those of Arabidopsis thaliana callus. Cell death was not detected in P. vittata callus even at arsenate concentrations up to 2 mM; however, A. thaliana callus died at low (0.2 mM) arsenate concentrations. Meanwhile, P. vittata callus accumulated almost three times more As than A. thaliana callus when exposed to 0.2 mM arsenate. About 60% of the total As was removed when 7.5 g of P. vittata callus was cultured on 150 ml of half-strength MS liquid medium containing 450 μg As for 2 days. Furthermore, P. vittata callus, sporophytes, and gametophytes all grew well under 1 mM of arsenate and accumulated 1,250; 1,150 and 2,180 mg kg−1 dry weight As when grown on 2 mM arsenate for 15 or 30 days. The characteristics of non-differentiated cells, large biomass, ease of culture, good synchronization, and excellent As sequestering, make the callus of P. vittata a new ideal system to study the mechanisms of As hyperaccumulation and phytoremediation in As-contaminated groundwater.  相似文献   

19.

Main conclusion

Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.
  相似文献   

20.
Hyphae and vesicles of arbuscular mycorrhizal fungi (AMF) were found within the decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. at three montane sites in Colombia. Hyphae, vesicles, and arbuscule-like structures were also found within scale-like leaves of the rhizomes of Paepalanthus sp. The litter found in the vicinity of the roots was divided into three decomposition layers. The highest AMF colonization occurred in the most decomposed leaves, which were in close association with roots. In contrast, there were no differences in AMF colonization of roots present in the different decomposition layers. Colonization of decomposing leaves by AMF did not differ between the two closely related species M. parvifolia and M. pubescens, nor between two sites (Guatavita and Zipacón, Colombia) differing in soil fertility. Occurrence of vesicles in decomposing leaves was correlated with abundant AMF extraradical hyphae among the leaves. We propose that AMF enter decomposing leaves mechanically through vascular tissue. As a consequence, AMF are well positioned to obtain and efficiently recycle mineral nutrients released by decomposer microorganisms before their loss by leaching or immobilization in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号