首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis, induced by a number of death stimuli, is associated with a fragmentation of the mitochondrial network. These morphological changes in mitochondria have been shown to require proteins, such as Drp1 or hFis1, which are involved in regulating the fission of mitochondria. However, the precise role of mitochondrial fission during apoptosis remains elusive. Here we report that inhibiting the fission machinery in Bax/Bak-mediated apoptosis, by down-regulating of Drp1 or hFis1, prevents the fragmentation of the mitochondrial network and partially inhibits the release of cytochrome c from the mitochondria but fails to block the efflux of Smac/DIABLO. In addition, preventing mitochondrial fragmentation does not inhibit cell death induced by Bax/Bak-dependent death stimuli, in contrast to the effects of Bcl-xL or caspase inhibition. Therefore, the fission of mitochondria is a dispensable event in Bax/Bak-dependent apoptosis.  相似文献   

2.
The loss of cell volume, termed apoptotic volume decrease (AVD) has been a hallmark feature of apoptosis. However the role of this characteristic attribute of programmed cell death has always been questioned as to whether it plays an active or passive factor during apoptosis. Here we review studies that suggest that AVD plays an active role during apoptosis and the underlying flux of ions that results in this morphological event regulates the programmed cell death process.  相似文献   

3.
Mitochondria-dependent apoptosis and cellular pH regulation   总被引:6,自引:0,他引:6  
Mitochondria play a critical role in apoptosis induction in response to myriad stimuli. These organelles release proteins into the cytosol which trigger caspase activation or perform other functions relevant to apoptosis, including cytochrome c (cyt-c), caspases, AIF, and SMAC (Diablo). The mechanisms by which these proteins escape from mitochondria remain enigmatic. Moreover, it is unclear whether release of these proteins versus disturbances in core mitochondrial functions represents the cell death commitment mechanism. In this regard, suppression of apoptosis using broad-spectrum caspase inhibitory compounds has been reported in many circumstances to prevent the morphological and biochemical manifestations of apoptosis, and yet not protect cells from death and not preserve clonigenic survival. Thus, while mitochondrial damage can be coupled to caspase activation pathways, cell death commitment often occurs upstream of caspase activation when mitochondria-dependent cell death pathways are invoked. Here, we review evidence implicating dysregulation of cellular pH as a component of the cell death mechanism involving mitochondria. Cell Death and Differentiation (2000) 7, 1155 - 1165  相似文献   

4.
A mitochondrial perspective on cell death   总被引:20,自引:0,他引:20  
The role of mitochondria as crucial participants in cell death programs is well established, yet the mechanisms responsible for the release of mitochondrial activators and the role of BCL2 family proteins in this process remain controversial. Here, we point out the limitations of current approaches used to monitor the physiological responses of mitochondria during cell death, the implications arising from modern views of mitochondrial structure, and briefly assess two proposed mechanisms for the release of mitochondrial proteins during apoptosis.  相似文献   

5.
Mitochondria as the central control point of apoptosis   总被引:66,自引:0,他引:66  
Mitochondria play a major role in apoptosis triggered by many stimuli. They integrate death signals through Bcl-2 family members and coordinate caspase activation through the release of cytochrome c as a result of the outer mitochondrial membrane becoming permeable. The mechanisms that lead to this permeability are not yet completely understood. Here, we attempt to summarize our current view of the mechanisms that lead to the efflux of many proteins from mitochondria during apoptosis and the role played by Bcl-2 family proteins in the control of this event.  相似文献   

6.
Mitochondria actively contribute to apoptotic cell death through mechanisms including the loss of integrity of the outer mitochondrial membrane, the release of intermembrane space proteins, such as cytochrome c, in the cytosol and the caspase cascade activation. This process is the result of careful cooperation not only among members of the Bcl‐2 family but also dynamin‐related proteins. These events are often accompanied by fission of the organelle, thus linking mitochondrial dynamics to apoptosis. Emerging evidences are suggesting a fine regulation of mitochondrial morphology by Bcl‐2 family members and active participation of fission–fusion proteins in apoptosis. The debate whether in mitochondrial morphogenesis the role of Bcl‐2 family members is functionally distinct from their role in apoptosis is still open and, above all, which morphological changes are associated with cell death sensitisation. This review will cover the findings on how the mitochondrial fission and fusion machinery may intersect apoptotic pathways focusing on recent advances on the key role played by Mcl‐1.  相似文献   

7.
Ulivieri C 《Tissue & cell》2010,42(6):339-347
An essential step in many forms of cell death is the release from mitochondria of “death effectors” which once in the cytoplasm activate signalling pathways leading to cellular demise. In this context mitochondria are known as regulators of cell death functioning as a node where signals are integrated. The discovery that alterations and remodelling of ultrastructural architecture of mitochondria are required to trigger the complete release of cytochrome c in the cytoplasm and the notion that mitochondrial architecture determines/influences the function of this organelle has fostered investigations on mitochondrial dynamics and on the machinery that regulates this process during cell death. In this review I shall summarize the current knowledge of mitochondrial inner membrane remodelling during cell death and discuss the role of mitochondrial proteins in governing structural alterations. I shall then discuss the role of the adaptor protein p66Shc as a regulator of mitochondrial metabolism during apoptosis.  相似文献   

8.
Granulysin is a cytolytic molecule released by CTL via granule-mediated exocytosis. In a previous study we showed that granulysin induced apoptosis using both caspase- and ceramide-dependent and -independent pathways. In the present study we further characterize the biochemical mechanism for granulysin-induced apoptosis of tumor cells. Granulysin-induced death is significantly inhibited by Bcl-2 overexpression and is associated with a rapid (1-5 h) loss of mitochondrial membrane potential, which is not mediated by ceramide generation and is not inhibited by the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Ceramide generation induced by granulysin is a slow event, only observable at longer incubation times (12 h). Apoptosis induced by exogenous natural (C(18)) ceramide is truly associated with mitochondrial membrane potential loss, but contrary to granulysin, this event is inhibited by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Ceramide-induced apoptosis is also completely prevented by Bcl-2 overexpression. The nuclear morphology of cells dying after granulysin treatment in the presence of caspase inhibitors suggested the involvement of mitochondrial apoptosis-inducing factor (AIF) in granulysin-induced cell death. We demonstrate using confocal microscopy that AIF is translocated from mitochondria to the nucleus during granulysin-induced apoptosis. The majority of Bcl-2 transfectants are protected from granulysin-induced cell death, mitochondrial membrane potential loss, and AIF translocation, while a small percentage are not protected. In this small percentage the typical nuclear apoptotic morphology is delayed, being of the AIF type at 5 h time, while at longer times (12 h) the normal apoptotic morphology is predominant. These and previous results support a key role for the mitochondrial pathway of apoptosis, and especially for AIF, during granulysin-induced tumoral cell death.  相似文献   

9.
10.
Mitochondria play a central role in maintaining cells alive, but are also important mediators of cell death. The main event in mitochondrial signalling and control of apoptosis is the permeabilisation of the outer mitochondrial membrane and the release of pro-apoptotic proteins into the cytosol from the mitochondrial intermembrane space. With respect to death receptor-mediated apoptosis, the activation of the mitochondrial pathway is required for apoptosis induction in cells which are described as “type II” cells whereas “type I” cells do not require it. In type I cells, activation of the extrinsic pathway is sufficient to induce apoptosis. This review deals with the events that enable cell death in type II cells, i.e., the signals that lead from death receptor stimulation to permeabilisation of the outer mitochondrial membrane. Caspase-8 and Bid are the known procurers of the death signal in this part of the apoptotic pathway. Currently many exciting new findings are emerging concerning the regulation of caspase-8 and Bid function and activation. We will take you on a journey through these new developments and point out what we consider the major unknowns in this field. We end our review on an up-to-date discussion of the determinants of the type I-type II cell distinction. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

11.
Programmed cell death or apoptosis is central to many physiological processes and pathological conditions such as organogenesis, tissue homeostasis, cancer, and neurodegenerative diseases. Bcl-2 family proteins tightly control this cell death program by regulating the permeabilization of the mitochondrial outer membrane and, hence, the release of cytochrome c and other pro-apoptotic factors. Control of the formation of the mitochondrial apoptosis-induced channel, or MAC, is central to the regulation of apoptosis by Bcl-2 family proteins. MAC is detected early in apoptosis by patch clamping the mitochondrial outer membrane. The focus of this review is on the regulation of MAC activity by Bcl-2 family proteins. The role of MAC as the putative cytochrome c release channel during early apoptosis and insights concerning its molecular composition are also discussed.  相似文献   

12.
Waterhouse NJ  Ricci JE  Green DR 《Biochimie》2002,84(2-3):113-121
Identification of pro-apoptotic activities for a variety of proteins normally resident in the mitochondrial inter-membrane space has substantiated the role of mitochondria as integral to the apoptotic process. Cytochrome c is involved in apoptosome formation and caspase activation, SMAC/Diablo deregulates the inhibitor of apoptosis proteins, apoptosis-inducing factor may play a role in chromatin condensation and release of other proteins such as adenylate kinase may adversely affect cellular metabolism and contribute to the death of a cell if the downstream apoptotic pathway is blocked. It is still unclear how these proteins are released from the mitochondria. Recent advances in our knowledge of mitochondrial outer-membrane permeabilization and the consequences of this event on mitochondria will be discussed.  相似文献   

13.
Mitochondria are 'life-essential' organelles for the production of metabolic energy in the form of ATP. Paradoxically mitochondria also play a key role in controlling the pathways that lead to cell death. This latter role of mitochondria is more than just a 'loss of function' resulting in an energy deficit but is an active process involving different mitochondrial proteins. Cytochrome c was the first characterised mitochondrial factor shown to be released from the mitochondrial intermembrane space and to be actively implicated in apoptotic cell death. Since then, other mitochondrial proteins, such as AIF, Smac/DIABLO, endonuclease G and Omi/HtrA2, were found to undergo release during apoptosis and have been implicated in various aspects of the cell death process. Members of the Bcl-2 protein family control the integrity and response of mitochondria to apoptotic signals. The molecular mechanism by which mitochondrial intermembrane space proteins are released and the regulation of mitochondrial homeostasis by Bcl-2 proteins is still elusive. This review summarises and evaluates the current knowledge concerning the complex role of released mitochondrial proteins in the apoptotic process.  相似文献   

14.
During apoptosis, mitochondria undergo multiple changes that culminate in the release of cytochrome c and other proapoptotic cofactors. Recently, a role for previously overlooked morphological changes, fission of the mitochondrial reticulum and remodeling of mitochondrial cristae, has been suggested in mammalian cells and in developmental apoptosis of C. elegans. Mitochondrial morphology is determined by fusion and fission processes, controlled by a growing set of “mitochondria-shaping” proteins, whose levels and function appear to regulate the mitochondrial pathways of cell death. Expression of pro-fusion proteins, as well as of inhibition of pro-fission molecules reduces apoptosis, suggesting a linear relationship between fragmentation and death. Mechanisms by which mitochondrial fragmentation promotes apoptosis and interactions between fragmentation and remodeling of the inner membrane are largely unclear. A tempting, unifying hypothesis suggests that fission is coupled to cristae remodeling to maximize cytochrome c release.  相似文献   

15.
Regulated cell death by apoptosis constitutes a primary host defense for counteracting invading viral pathogens. In recent years, advances in the field of apoptosis research have revealed that mitochondria and mitochondria-derived factors play a central role in regulating cellular commitment to apoptosis. Here we explore the role of viral proteins in modulating cell death pathways that are relayed via this mitochondrial checkpoint.  相似文献   

16.
Ceramides are potent lipid second messengers that are involved in apoptotic and hypoxic/ischaemic neurone death. We investigated the role of mitochondria and the mitochondrial apoptosis pathway in ceramide-induced cell death using human D283 medulloblastoma cells with a reduced mitochondrial DNA copy number (rho- cells) and a corresponding defect in mitochondrial respiration. Treatment with the complex I inhibitor rotenone, C2- or C8-ceramide induced cell death in D283 control cells, while rho- cells were significantly protected. In contrast, activation of the mitochondrial apoptosis pathway by transient overexpression of the pro-apoptotic Bax protein or exposure to the kinase inhibitor staurosporine induced apoptosis to a similar extent in control and rho- cells. Overexpression of the antiapoptotic protein Bcl-xL failed to inhibit the toxic effect of C2-ceramide in D283 control cells, and no significant increase in caspase-3-like protease activity could be detected during the death process. Despite this, C2-ceramide induced significant chromatin condensation and cell shrinkage in D283 control cells, reminiscent of apoptosis. These morphological alterations were associated with the activation of calpains. Both apoptotic morphology and calpain activation were attenuated in rho- cells. Our data indicate that the apoptosis-inducing effect of C2-ceramide may require mitochondrial respiratory chain activity and can occur independently of the mitochondrial apoptosis pathway, but involves the activation of calpains.  相似文献   

17.
Programmed cell death (PCD) is essential for normal development and maintenance of tissue homeostasis in multicellular organisms. While it is now evident that PCD can take many different forms, apoptosis is probably the most well-defined cell death programme. The characteristic morphological and biochemical features associated with this highly regulated form of cell death have until recently been exclusively attributed to the caspase family of cysteine proteases. As a result, many investigators affiliate apoptosis with its pivotal execution system, i.e. caspase activation. However, it is becoming increasingly clear that PCD or apoptosis can also proceed in a caspase-independent manner and maintain key characteristics of apoptosis. Mitochondrial integrity is central to both caspase-dependent and-independent cell death. The release of pro-apoptotic factors from the mitochondrial intermembrane space is a key event in a cell's commitment to die and is under the tight regulation of the Bcl-2 family. However, the underlying mechanisms governing the efflux of these pro-death molecules are largely unknown. This review will focus on the regulation of mitochondrial integrity by Bcl-2 family members with particular attention to the controlled release of factors involved in caspase-independent cell death.  相似文献   

18.
It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human.  相似文献   

19.
Fluorescent protein based signaling probes are emerging as valuable tools to study cell signaling because of their ability to provide spatio- temporal information in non invasive live cell mode. Previously, multiple fluorescent protein probes were employed to characterize key events of apoptosis in diverse experimental systems. We have employed a live cell image based approach to visualize the key events of apoptosis signaling induced by zerumbone, the active principle from ginger Zingiber zerumbet, in cancer cells that enabled us to analyze prominent apoptotic changes in a hierarchical manner with temporal resolution. Our studies substantiate that mitochondrial permeabilisation and cytochrome c dependent caspase activation dominate in zerumbone induced cell death. Bax activation, the essential and early event of cell death, is independently activated by reactive oxygen species as well as calpains. Zerumbone failed to induce apoptosis or mitochondrial permeabilisation in Bax knockout cells and over-expression of Bax enhanced cell death induced by zerumbone confirming the essential role of Bax for mitochondrial permeabilsation. Simultaneous inhibition of reactive oxygen species and calpain is required for preventing Bax activation and cell death. However, apoptosis induced by zerumbone was prevented in Bcl 2 and Bcl-XL over-expressing cells, whereas more protection was afforded by Bcl 2 specifically targeted to endoplasmic reticulum. Even though zerumbone treatment down-regulated survival proteins such as XIAP, Survivin and Akt, it failed to affect the pro-apoptotic proteins such as PUMA and BIM. Multiple normal diploid cell lines were employed to address cytotoxic activity of zerumbone and, in general, mammary epithelial cells, endothelial progenitor cells and smooth muscle cells were relatively resistant to zerumbone induced cell death with lesser ROS accumulation than cancer cells.  相似文献   

20.
Programmed cell death (apoptosis) is used by multicellular organisms during development and to maintain homeostasis within mature tissues. One of the first genes shown to regulate apoptosis was bcl-2. Subsequently, a number of Bcl-2-related proteins have been identified. Despite overwhelming evidence that Bcl-2 proteins are evolutionarily conserved regulators of apoptosis, their precise biochemical function remains controversial. Three biochemical properties of Bcl-2 proteins have been identified: their ability to localize constitutively and/or inducibly to the outer mitochondrial, outer nuclear and endoplasmic reticular membranes, their ability to form heterodimers with proteins bearing an amphipathic helical BH3 domain, and their ability to form ion-conducting channels in synthetic membranes. The discovery that mitochondria can play a key part in the induction of apoptosis has focused attention on the role that Bcl-2 proteins may have in regulating either mitochondrial physiology or mitochondria-dependent caspase activation. Here we attempt to synthesize our current understanding of the part played by mitochondria in apoptosis with a consideration of how Bcl-2 proteins might control cell death through an ability to regulate mitochondrial physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号