首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.  相似文献   

2.
典型农田退耕后土壤真菌与细菌群落的演替   总被引:4,自引:0,他引:4  
土壤真菌和细菌作为地下生态系统的重要组成部分,其群落的恢复状况是评价农田退耕还林生态效益的重要指标。以云南省维西县典型退耕还林农田为对象,利用高通量测序等方法比较了不同退耕年限的农田土壤中真菌和细菌群落随植被演替的变化特征。结果发现,农田撂荒后土壤细菌多样性先显著降低后缓慢上升,真菌多样性变化不明显;地上部植被由草本经灌丛再向林地演替的过程中,土壤真菌的群落组成随植被变化呈现明显的改变,主要体现在粪壳菌纲(Sordariomycetes)所占比例的减少(由30%减至10%左右)和伞菌纲(Agaricomycetes)所占比例的增加(由5%以下增至20%以上);而细菌的群落组成无明显变化。聚类分析的结果显示,真菌的群落组成变化与植物群落的演替规律更为同步。不同演替阶段的退耕农田土壤真菌和细菌群落均明显区别于未经扰动的天然林,表明人为扰动对土壤微生物群落的影响可能在较长时间内持续存在。研究揭示了云南典型农田退耕后地下土壤真菌和细菌群落随植被演替的变化特征,为全面评价该地区退耕还林的生态效益提供了数据支撑。  相似文献   

3.
Floristic composition and soil characteristics (moisture, pH, nutrient contents) in abandoned upland rice paddies of different ages were analyzed to clarify the regenerative aspects of succession as a tool for habitat restoration. The study sites represented five seral stages: newly abandoned paddy fields; successional paddy fields abandoned for 3, 7, and 10 years; and a 50‐year‐old Alnus japonica forest. A vegetation sere was apparent in changes of dominant plant species in the order Alopecurus aequalis var. amurensis (annual grass), Aneilema keisak (annual forb), Juncus effusus var. decipiens (rush), Salix koriyanagi (willow), and Alnus japonica (alder) communities. These temporal stages resemble the spatial zonation of vegetation in local riparian floodplain ecosystems, indicating a hydrosere, with soil moisture decreasing over time. Age distributions and life forms of the dominant plant species support a “tolerance” model of secondary succession, in which the established species persist into later successional stages. Persistence of earlier colonizers led to a net cumulative increase in species richness and a more even distribution of species cover with increasing field age. Between 10 and 50 years, vegetation stabilizes as an alder community. Soil moisture content decreased steadily with paddy field age after an initial rise immediately after their abandonment, whereas pools of organic matter, N, P, K, Ca, and Mg, increased with field age. The pace and direction of recovery of native vegetation and natural soil properties in these abandoned rice paddies resembled classic old field succession, a form of secondary succession that often serves as a template for guiding restoration efforts. Active intervention, in particular dismantling artificial levees, could accelerate the recovery process, but natural habitat recovery generally appears sufficiently robust to achieve “passive” restoration of this rare community without intervention.  相似文献   

4.
The landscapes colonized by invasive earthworms in the eastern U.S. are often patchworks of forest stands in various stages of successional development. We established six field sites in tulip poplar dominated forests in the Smithsonian Environmental Research Center in Edgewater, MD, that span mid (50–70 years-three plots) and late (120–150 years-three plots) successional stages where younger sites had greater earthworm density and biomass than older sites and were dominated by non-native lumbricid species. In particular Lumbricus rubellus, a litter-feeding species, was abundant in mid successional forests. Here, we separated particulate organic matter (POM) from the bulk soil by a combination of size and density fractionation and found that patterns in soil POM chemistry were similar to those found previously during litter decay: in younger forests with high abundance of earthworms, organic carbon normalized cutin- and suberin-derived substituted fatty acid (SFA) concentration was lower and lignin-derived phenols greater than in older forests where earthworms were less abundant. The chemistry of the dominant litter from mid versus late successional tree species did not fully explain the differences in POM chemistry between age classes. Instead, the differences in leaf body versus petiole and leaf versus root chemistry were the dominant drivers of POM chemistry in mid versus late successional stands, although aspects of stand age and tree species also impacted POM chemistry. Our results indicate that preferential ingestion of leaf body tissue by earthworms and the subsequent shifts in sources of plant biopolymers in soil influenced POM chemistry in mid successional forests. These results indicate that invasive earthworm activity in North American forests contributes to a shift in the aromatic and aliphatic composition of POM and thus potentially influences carbon stabilization in soil.  相似文献   

5.
Impaired ecosystems are converted back to natural ecosystems or some other target stage by means of restoration and management. Due to their agricultural legacy, afforested fields might be valuable compensatory habitats for rare fungal species that require nutrient‐rich forest soils. Using a large‐scale field experiment in Finland, we studied community composition of macrofungi (agarics and boletes) on former fields, which had been afforested as monocultures 20 years ago using native spruce Picea abies, pine Pinus sylvestris, and birch Betula pendula. We studied the effect of soil quality, tree species, and site on community composition and structure. Many nutrient‐demanding as well as rare fungal species were recorded, particularly from pine and spruce plots. Pine plots supported more nutrient‐demanding fungi than birch plots. There was no relationship between soil pH, bulk density, P, N, or Ca, and species richness of nutrient‐demanding fungi. Fungal community composition was more similar within sites than among sites for all tree species. Among sites, spruce plots had the smallest fungal species turnover, and birch plots largest. Within sites, however, fungal species turnover from plot to plot was similar among tree species. Our results indicate that tree species has a relatively mild influence on species composition of fungi after 20 years of succession. Interestingly, the results show that afforested fields can be valuable complementary habitats for rare, red‐listed, and nutrient‐demanding fungal species. Field afforestation is a potential conservation tool that could be used to complement the poor representation of rare habitat types in highly fragmented protected area networks.  相似文献   

6.
For the heavily degraded ecosystem on the Chinese Loess Plateau, it would be of great significance if vegetation restoration could be accelerated anthropogenically. However, one major concern is that if the late successional species were planted or sown in degraded habitats, would they still be competitive in terms of some critical plant traits associated with specific habitats? Water use efficiency (WUE) is a major plant trait shaping the pattern of species turnover in vegetation secondary succession on the Loess Plateau. We hypothesized that if late successional stage plants could still hold a competitive advantage in terms of WUE, the prospects for an acceleration of succession by sowing these species in newly abandoned fields would be good. We tested this hypothesis by comparing the leaf C isotope ratio (δ13C) value (a surrogate of WUE) of dominant species from different successional stages at given soil C and N levels. Results indicated that leaf δ13C of the two dominant species that co-dominated in the second and third stages were significantly more positive than that of the dominant species from the first stage regardless of changing soil C and N. Yet the dominant species from the climax stage is a C4 grass assumed to have the highest WUE. In addition, increasing soil nutrition had no effects on leaf δ13C of two dominant species in the late successional stage, indicating that dominant species from the late successional stages could still have a competitive advantage in terms of WUE in soil C- and N-poor habitats. Therefore, from the perspective of plant WUE, there are great opportunities for ecosystem restoration by sowing both dominant species and other species that co-occur in late successional stages in newly abandoned fields, for the purpose of enhancing species diversity and optimising species composition.  相似文献   

7.
Summary Abundance and distribution of vascular plants and vesicular-arbuscular mycorrhizal (VAM) fungi across a soil moisture-nutrient gradient were studied at a single site. Vegetation on the site varied from a dry mesic paririe dominated by little bluestem (Schizachyrium scoparium) to emergent aquatic vegetation dominated by cattail (Typha latifolia) and water smartweed (Polygonum hydropiperoides). Plant cover, VAM spore abundance, plant species richness, and number of VAM fungi represented as spores, had significant positive correlations with each other and with percent organic matter. The plant and VAM spore variables had significant negative correlations with soil pH and available Ca, Mg, P and gravimetric soil moisture. Using stepwise multiple regression, Ca was found to be the best predictor of spore abundance. Test for association between plant species and VAM fungal spores indicated that the spores of Glomus caledonium are associated with plants from dry, nutrient poor sites and spores of gigaspora gigantea are positively associated with plants occurring on the wet, relatively nutrient rich sites. Glomus fasciculatum was the most abundant and widely distributed VAM fungus and it had more positive associations with endophyte hosts than the other VAM fungi. We found no relationship between beta niche breadth of plant species and the presence or absence of mycorrhizal infection. However, our data suggest that some plant species may vary with respect to their infection status depending upon soil moisture conditions that may fluctuate seasonally or annually to favor or hinder VAM associations.  相似文献   

8.
Polar willow (Salix polaris Wahlenb.), a mycorrhizal dwarf shrub, colonizes recently deglaciated areas in the High Arctic, Svalbard. To clarify successional changes in ECM fungi associated with S. polaris after glacier retreat, we examined the diversity and density of ECM fungi in culture and field conditions. Plant and soil samples were collected from three sites of different successional stages in the deglaciated area of Austre Br?ggerbreen, near Ny-?lesund, Svalbard. The successional stages were early stage with newly exposed bare ground (site I), transient stage with scattered colonization of Salix (sites IIa and IIb), and late stage with well-developed vegetation (site III). No ECM colonization on Salix was observed in soils collected from bare ground in early and transient stages (sites I and IIa). However, most Salix individuals showed ECM colonization in soils collected from sites close to Salix colonies in transient and late stages (sites IIb and III). Based on molecular analyses and operational taxonomic unit (OTU: >95% ITS sequence similarity) delimitations, we identified 15 OTUs/species in eight genera. The dominant OTU/species of ECM fungi identified in the transient and late stages was Geopora sp.1 and Cenococcum sp.1, respectively. In the culture experiment, ECM diversity was greater in late stage (eight OTUs/species) than in transient stage (three OTUs/species). This pattern was consistent with field observations, i.e., late-stage sites contained more OTUs/species of ECM fungi. These results indicate that species diversity of ECM fungi increases and the dominant species changes with the progress of succession after glacier retreat in the High Arctic.  相似文献   

9.
云南松林次生演替阶段土壤细菌群落的变化   总被引:1,自引:0,他引:1  
土壤细菌多样性是维持森林生态系统功能的关键因子,森林演替是影响其动态变化的重要因素。研究云南松林不同演替阶段土壤细菌群落结构及其多样性的变化规律,有助于深入理解森林生态系统恢复过程的驱动机制。本研究以云南省永仁县皆伐后形成的针叶林、针阔混交林和常绿阔叶林为对象,基于Illumina Hiseq高通量测序技术,分析森林演替过程中土壤细菌群落组成、结构、多样性及其影响因子的变化。结果表明: 土壤细菌的种群分类单元、Ace指数、Chao1指数和Shannon指数均随着演替进行呈减少趋势,演替早期阶段土壤的细菌总数、菌群丰富度及复杂程度最高。不同演替阶段细菌群落结构存在显著差异,其中,针阔混交林的差异最大,变形菌门和酸杆菌门为各演替序列共有的优势类群,放线菌门、绿弯菌门和Patescibacteria是演替早期的优势类群,且随着演替进行呈现减少趋势;变形菌门和WPS-2相对多度随演替进行呈增加趋势。土壤pH和乔木层物种丰富度是驱动次生演替过程中土壤细菌群落组成变化的关键因子。随着演替的进行,土壤细菌多样性减少,群落组成差异加大。  相似文献   

10.
Niche differentiation in soil horizons, host species and natural nutrient gradients contribute to the high diversity of ectomycorrhizal fungi in boreal forests. This study aims at documenting the diversity and community composition of ectomycorrhizal fungi of Norway spruce ( Picea abies ) and silver birch ( Betula pendula ) seedlings in five most abundant microsites in three Estonian old-growth forests. Undisturbed forest floor, windthrow mounds and pits harboured more species than brown- and white-rotted wood. Several species of ectomycorrhizal fungi were differentially represented on either hosts, microsites and sites. Generally, the most frequent species in dead wood were also common in forest floor soil. Ordination analyses suggested that decay type determined the composition of EcM fungal community in dead wood. Root connections with in-growing mature tree roots from below affected the occurrence of certain fungal species on seedling roots systems in dead wood. This study demonstrates that ectomycorrhizal fungi differentially establish in certain forest microsites that is attributable to their dispersal and competitive abilities. Elevated microsites, especially decayed wood, act as seed beds for both ectomycorrhizal forest trees and fungi, thus affecting the succession of boreal forest ecosystems.  相似文献   

11.
The hypothesis that plant species are more responsive to mycorrhiza in late than in early successional stages was assessed in grasses from a successional process occurring in two-phase mosaics from the Mexican Chihuahuan Desert. We estimated the density of spores of arbuscular mycorrhizal (AM) fungi and the AM colonization of pioneer and late-successional grasses in the field. In growth chamber experiments, we tested the effect of the native AM fungal community on grasses growing in soils from different successional stages. Spore density was higher in late than in early successional stages. Late-successional species were more responsive to AM (positive AM responsiveness) whereas pioneer species were nondependent on mycorrhiza or if associated to AM fungi, the interaction showed a negative AM responsiveness for the seedling stage. Our findings showed that late successional species fitted the proposed models of mycorrhizal performance, but the two pioneer species differed in their AM condition and responsiveness. This further supports the idea that AM interactions are more complex along the successional processes than the predictions of the more widely cited hypotheses.  相似文献   

12.
Understanding the processes that underpin the community assembly of bacteria is a key challenge in microbial ecology. We studied soil bacterial communities across a large-scale successional gradient of managed and abandoned grasslands paired with mature forest sites to disentangle drivers of community turnover and assembly. Diversity partitioning and phylogenetic null-modelling showed that bacterial communities in grasslands remain compositionally stable following abandonment and secondary succession but they differ markedly from fully afforested sites. Zeta diversity analyses revealed the persistence of core microbial taxa that both reflected and differed from whole-scale community turnover patterns. Differences in soil pH and C:N were the main drivers of community turnover between paired grassland and forest sites and the variability of pH within successional stages was a key factor related to the relative dominance of deterministic assembly processes. Our results indicate that grassland microbiomes could be compositionally resilient to abandonment and secondary succession and that the major changes in microbial communities between grasslands and forests occur fairly late in the succession when trees have established as the dominant vegetation. We also show that core taxa may show contrasting responses to management and abandonment in grasslands.  相似文献   

13.
Abstract. Vesicular‐arbuscular endomycorrhizal fungi include among its members some of the most widespread root symbiont species. It is not known whether these fungal species show environmental or host preferences. In 13 semi‐arid savanna sites in Botswana, we found positive correlations between individual environmental factors and the abundance of VAM associations in the roots of an important host, the indigenous fruit tree Vangueria infausta (Rubiaceae). The concentration of phosphorus in the leaves of the host was positively correlated with both phosphorus in the soil and the abundance of VAM associations in its roots, indicating direct benefits to the host of this association. Abundance of VAM associations was significantly different between the studied sites and between seasons and was positively correlated with the mean annual rainfall. In addition, there was a negative correlation with phosphorus concentration in the soil. The differences between the summer and winter abundance of VAM associations were positively correlated with the density of bush cover and the amount of grazing. The apparent correlation found between the abundance of VAM in V. infausta and bush and tree community composition is presumably related to correlations between these two parameters and environmental conditions.  相似文献   

14.
Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species (Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora, accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal–tree–soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.  相似文献   

15.
Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.  相似文献   

16.
There is rising awareness that different arbuscular mycorrhizal (AM) fungi have different autoecology and occupy different soil niches and that the benefits they provide to the host plant are dependent on plant-AM fungus combination. However, the role and community composition of AM fungi in succession are not well known and the northern latitudes remain poorly investigated ecosystems. We studied AM fungal communities in the roots of the grass Deschampsia flexuosa in two different, closely located, successional stages in a northern Aeolian sand area. The AM fungal taxa richness in planta was estimated by cloning and sequencing small subunit ribosomal RNA genes. AM colonization, shoot δ 13C signature, and %N and %C were measured. Soil microbial community structure and AM fungal mycelium abundance were estimated using phospholipid (PLFA) and neutral lipid (NLFA) analyses. The two successional stages were characterized by distinct plant, microbial, and fungal communities. AM fungal species richness was very low in both the early and late successional stages. AM frequency in D. flexuosa roots was higher in the early successional stage than in the late one. The AM fungal taxa retrieved belonged to the genera generally adapted to Arctic or extreme environments. AM fungi seemed to be important in the early stage of the succession, suggesting that AM fungi may help plants to better cope with the harsh environmental conditions, especially in an early successional stage with more extreme environmental fluctuations.  相似文献   

17.
Decaying wood plays an important role in forest biodiversity, nutrient cycling and carbon balance. Community structure of wood-inhabiting fungi changes with mass loss of wood, but the relationship between substrate quality and decomposers is poorly understood. This limits the extent to which these ecosystem services can be effectively managed. We studied the fungal community and physico-chemical quality (stage of decay, dimensions, density, moisture, C : N ratio, lignin and water or ethanol extractives) of 543 Norway spruce logs in five unmanaged boreal forest sites of southern Finland. Fungi were identified using denaturing gradient gel electrophoresis and sequencing of DNA extracted directly from wood samples. Macroscopic fruiting bodies were also recorded. Results showed a fungal community succession with decreasing wood density and C : N ratio, and increasing moisture and lignin content. Fungal diversity peaked in the most decayed substrates. Ascomycetes typically colonized recently fallen wood. Brown-rot fungi preferred the intermediate decay stages. White-rot fungi represented approximately one-fifth of sequenced species in all decay phases excluding the final phase, where ectomycorrhizal (ECM) fungi became dominant. Lignin content of logs with white-rot fungi was low, and ECM fungi were associated with substrates containing abundant nitrogen. Macroscopic fruiting bodies were observed for only a small number of species detected with molecular techniques.  相似文献   

18.
The mycorrhizal status of water-impounding tank bromeliad epiphytes from three locales differing in altitude and moisture regime within Venezuelan cloud forest was examined. Species of vesicular-arbuscular mycorrhizal (VAM) fungi found in arboreal soils were compared to VAM fungi found in terrestrial soils. Sixteen of the 19 epiphytes examined for the presence of VAM fungi had roots with infection stages; 14 of these specimens showed growth of the fine endophyte Glomus tenue. Fine endophyte was the only VAM fungus found associated with epiphytes in the driest locale studied, while coarse VAM fungi (Gigaspora and Scutellospora spp.) were found at sampling locales receiving more moisture. Root infection was usually composed of intercellular hyphae and peletons; few arbuscules were observed. However, abundant extracellular hyphae were often observed tangled about roots in arboreal soil. It is concluded that epiphytic bromeliads probably benefit, at least periodically, from VAM fungi scavenging for sporadically available nutrients in arboreal soils. Glomus tenue may be particularly important as a colonizing VAM fungus in drier sites of Venezuelan cloud forest. The species composition of VAM fungi in arboreal soils was different to that of terrestrial soils sampled directly under epiphytic bromeliad perches, suggesting that VAM fungi species associated with bromeliads are dispersed to their hosts by vagile animal vectors.  相似文献   

19.
Plant interactions with soil biota could have a significant impact on plant successional trajectory by benefiting plants in a particular successional stage over others. The influence of soil mutualists such as mycorrhizal fungi is thought to be an important feedback component, yet they have shown benefits to both early and late successional plants that could either retard or accelerate succession. Here we first determine if arbuscular mycorrhizal (AM) fungi differ among three stages of primary sand dune succession and then if they alter growth of plants from particular successional stages. We isolated AM fungal inoculum from early, intermediate or late stages of a primary dune succession and compared them using cloning and sequencing. We then grew eight plant species that dominate within each of these successional stages with each AM fungal inoculum. We measured fungal growth to assess potential AM functional differences and plant growth to determine if AM fungi positively or negatively affect plants. AM fungi isolated from early succession were more phylogenetically diverse relative to intermediate and late succession while late successional fungi consistently produced more soil hyphae and arbuscules. Despite these differences, inocula from different successional stages had similar effects on the growth of all plant species. Host plant biomass was not affected by mycorrhizal inoculation relative to un‐inoculated controls. Although mycorrhizal communities differ among primary dune successional stages and formed different fungal structures, these differences did not directly affect the growth of plants from different dune successional stages in our experiment and therefore may be less likely to directly contribute to plant succession in sand dunes.  相似文献   

20.
Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next‐generation high‐throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host–fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant–fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant–fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号