首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The aglycone has been largely ignored in consideration of glycoconjugate function. Evidence is reviewed which suggests that the role of the lipid in glycolipid carbohydrate function may be particularly significant. The lipid moiety can promote or reduce carbohydrate exposure of membrane glycolipids. Theoretical calculation has indicated that the plane of the plasma membrane can restrict the permitted conformations of a given glycolipid oligosaccharide. Thus the lipid moiety may influence the relative conformation of such carbohydrate sequences. Evidence of ceramide regulation of glycolipid function can be found in studies of enzyme substrate specificity, antiglycolipid recognition and bacterial/host cell interactions. Studies of verotoxin binding to its glycolipid receptor globotriaosyl ceramide indicate that modulation of receptor function by glycolipid fatty acid content plays an important role inin vitro binding assays, cell cytotoxicity and intracellular routing.  相似文献   

2.
Globotetraosylceramide is recognized by the pig edema disease toxin   总被引:20,自引:0,他引:20  
The pig edema disease toxin has been shown by a tlc glycolipid binding assay to bind specifically to globotetraosylceramide (Gb4, GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4GlcCer.). Binding was reduced for globotriosylceramide (Gb3, Gal alpha 1-4Gal beta 1-4GlcCer) and more markedly for the Forssman antigen (GalNAc alpha 1-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4GlcCer). Paragloboside, blood group A glycolipids, glycolipids terminating in Gal NAc beta 1-4Gal-, and glycolipids in which globoside was present as an internal sequence did not bind the toxin. Isogloboside (GalNAc beta 1-3Gal alpha 1-3Gal beta 1-4GlcCer) was efficiently recognized. This toxin is genetically related to the verotoxin (or Shiga-like) family of toxins for which Gb3 has been shown to be the receptor. The difference in susceptibility of cell lines to the cytotoxicity of the pig edema disease toxin and the Shiga and Shiga-like toxins is consistent with the difference in receptor glycolipid binding.  相似文献   

3.
Escherichia coli verotoxin, also known as Shiga-like toxin, binds to eukaryotic cell membranes via the glycolipid Gb(3) receptors which present the P(k) trisaccharide Galalpha(1-4)Galbeta(1-4)Glcbeta. Crystallographic studies have identified three P(k) trisaccharide (P(k)-glycoside) binding sites per verotoxin 1B subunit (VT1B) monomer while NMR studies have identified binding of P(k)-glycoside only at site 2. To understand the basis for this difference, we studied binding of wild type VT1B and VT1B mutants, defective at one or more of the three sites, to P(k)-glycoside and pentavalent P(k) trisaccharide (pentaSTARFISH) in solution and Gb(3) presented on liposomal membranes using surface plasmon resonance. Site 2 was the key site in terms of free trisaccharide binding since mutants altered at sites 1 and 3 bound this ligand with wild type affinity. However, effective binding of the pentaSTARFISH molecule also required a functional site 3, suggesting that site 3 promotes pentavalent binding of linked trisaccharides at site 1 and site 2. Optimal binding to membrane-associated Gb(3) involved all three sites. Binding of all single site mutants to liposomal Gb(3) was weaker than wild type VT1B binding. Site 3 mutants behaved as if they had reduced ability to enter into high avidity interactions with Gb(3) in the membrane context. Double mutants at site 1/site 3 and site 2/site 3 were completely inactive in terms of binding to liposomal Gb(3,) even though the site 1/site 3 mutant bound trisaccharide with almost wild type affinity. Thus site 2 alone is not sufficient to confer high avidity binding to membrane-localized Gb(3). Cytotoxic activity paralleled membrane glycolipid binding. Our data show that the interaction of verotoxin with the Gb(3) trisaccharide is highly context dependent and that a membrane environment is required for biologically relevant studies of the interaction.  相似文献   

4.
Verotoxins (or Shiga-like toxins) are a family of closely related toxins elaborated by Escherichia coli. At least three toxins have been described, VT1, VT2, and SLTII, in addition to Shiga toxin itself, and all bind to globotriaosyl ceramide, Gb3. Some discrepancies exist in the literature regarding the binding of the toxins to Gb4 as monitored by TLC overlay procedures. These procedures are widely used to investigate the specificity of carbohydrate-binding ligands. Polyisobutylmethacrylate, PIBM, is generally used in TLC overlay procedures to prevent silica loss and orient carbohydrate moieties for the binding of various ligands to glycolipids. We now report that pretreatment of chromatograms with PIBM modifies binding of VT1 to include Gb4 and decreases binding to Gb3 and the P1 glycolipid. We suggest that PIBM can alter the conformation of the glycolipid oligosaccharide, and therefore caution is advised in analysis of ligand binding to glycolipids after treatment with this compound.  相似文献   

5.
We examined the competition of binding of Lactobacillus reuteri and Helicobacter pylori to gangliotetraosylceramide (asialo-GM1) and sulfatide which are putative glycolipid receptor molecules of H. pylori, and identified a possible sulfatide-binding protein of the L. reuteri strain. Among nine L. reuteri strains, two (JCM1081 and TM105) were shown to bind to asialo-GM1 and sulfatide, and to inhibit binding of H. pylori to both glycolipids by a thin layer chromatogram-overlay assay using biotin-labeled bacterial cells. The extract from the bacterial cells of strain TM105 with several detergents, including octyl beta-D-glucopyranoside, retained binding to both glycolipids and also inhibited H. pylori binding, suggesting that a binding inhibitor(s) is associated with the bacterial cell surface. When the cell extract was applied to the agarose gel immobilized galactose 3-sulfate corresponding to the structure of sugar moieties of sulfatide, an approximately 47-kDa protein was found to bind to the gel. This observation strongly suggested that inhibition by selected L. reuteri strains help to prevent infection in an early stage of colonization in H. pylori and proposed that L. reuteri strains sharing glycolipid specificity with H. pylori have a potential as probiotics.  相似文献   

6.
The major virulence factor of Shiga toxin producing E. coli, is Shiga toxin (Stx), an AB5 toxin that consists of a ribosomal RNA-cleaving A-subunit surrounded by a pentamer of receptor-binding B subunits. The two major isoforms, Stx1 and Stx2, and Stx2 variants (Stx2a-h) significantly differ in toxicity. The exact reason for this toxicity difference is unknown, however different receptor binding preferences are speculated to play a role. Previous studies used enzyme linked immunosorbent assay (ELISA) to study binding of Stx1 and Stx2a toxoids to glycolipid receptors. Here, we studied binding of holotoxin and B-subunits of Stx1, Stx2a, Stx2b, Stx2c and Stx2d to glycolipid receptors globotriaosylceramide (Gb3) and globotetraosylceramide (Gb4) in the presence of cell membrane components such as phosphatidylcholine (PC), cholesterol (Ch) and other neutral glycolipids. In the absence of PC and Ch, holotoxins of Stx2 variants bound to mixtures of Gb3 with other glycolipids but not to Gb3 or Gb4 alone. Binding of all Stx holotoxins significantly increased in the presence of PC and Ch. Previously, Stx2a has been shown to form a less stable B-pentamer compared to Stx1. However, its effect on glycolipid receptor binding is unknown. In this study, we showed that even in the absence of the A-subunit, the B-subunits of both Stx1 and Stx2a were able to bind to the glycolipids and the more stable B-pentamer formed by Stx1 bound better than the less stable pentamer of Stx2a. B-subunit mutant of Stx1 L41Q, which shows similar stability as Stx2a B-subunits, lacked glycolipid binding, suggesting that pentamerization is more critical for binding of Stx1 than Stx2a.  相似文献   

7.
Verotoxin (VT) binding to the trisaccharide portion of globotriaosyl ceramide (Gb(3)) is believed to be a crucial step in the development of hemolytic uremic syndrome (HUS) commonly known as 'Hamburger disease'. This interaction is the initial step in the binding process and defines the specificity of verotoxin binding to cellular membranes. Although molecular modeling, co-crystallization and co-NMR studies with VT and the trisaccharide moiety of Gb(3) have indicated potential multiple sites for Gb(3) binding, little is known about their direct effects on kinetic and equilibrium binding. Here we describe how the binding of radiolabeled VT ([(125)I]VT1) to Gb(3) in a microtiter well format, is driven by two different association rate constants (k(+1a)=0.0075 and k(+1b)=0.275 min(-1) nM(-1)) with the high affinity site representing 15% of the total specific binding sites. Binding was reversible at room temperature, reached equilibrium after 2-3 h, and non-specific binding was less than 5%. Equilibrium binding studies defined by [(125)I]VT1 saturation binding to 15, 30, 60 and 120 ng Gb(3)/well, showed the presence of a single site with dissociation constants (K(d)s) ranging between 0.5 and 3 nM. However, the maximum density of specific [(125)I]VT1 binding sites (B(max)) did not directly correlate with the Gb(3) concentration per well: the most[(125)I]VT1 binding was observed for 60 ng Gb(3) (B(max)=1.28 nM; compared to 0. 23 nM for 30 ng Gb(3) and 0.65 nM for 120 ng Gb(3)). Furthermore, while Hill coefficients (n(H)) for 15, 30 and 120 ng Gb(3) were close to unity indicating single interactions, for the saturation isotherm for 60 ng Gb(3)/well n(H) was 1.4. Subsequent Scatchard analysis yielded a concave downward curve for [(125)I]VT1 binding to 60 ng Gb(3)/well, suggesting positive co-operativity. We present, for the first time, conclusive binding data confirming the presence of at least two discrete Gb(3) binding sites: these multivalent interactions between verotoxin VT-1 and Gb(3) were described by association reactions driven by two distinct rate constants, as well as by the positive co-operativity governing binding at a restricted receptor concentration. These results imply that the concentration of Gb(3) on the surface of target cells can have a complex, non-linear effect on verotoxin binding and thereby, on sensitivity to cytotoxicity.  相似文献   

8.
The cellular specificity of the Escherichia coli-derived verotoxin is of particular interest because of its extreme toxicity and high selectivity toward certain primate cells. The human Burkitt lymphoma cell line (Daudi) is highly susceptible to the cytotoxicity of verotoxin and contains large amounts of the verotoxin-binding glycolipids on its surface. A mutant selected from Daudi cells for verotoxin resistance was found to be deficient in the verotoxin-binding glycolipids, globotriosylceramide and galabiosylceramide, and failed to bind verotoxin to its surface; interestingly, these mutant cells were found to be cross-resistant to inhibition of growth by alpha-interferon. Mutant cells also lack the high affinity component of alpha-interferon binding. These observations suggest that, in addition to providing the functional cell-surface receptor for verotoxin, these glycolipids may also play a role in the modulation of the affinity of alpha-interferon for its membrane protein receptors.  相似文献   

9.
Purified renal globotriaosyl ceramide (Gb3)/cholesterol mixtures sonicated heated in a Triton-containing buffer placed below a discontinuous sucrose gradient form glycosphingolipid (GSL)-containing dense lipid structures at the 30/5% sucrose interface after centrifugation. Inclusion of fluorescein-labeled verotoxin 1 B subunit (FITC-VT1 B) within the most dense sucrose layer results in the fluorescent labeling of this Gb3-containing raft structure. Alternatively inclusion of I-labeled VT1 fractionation allows quantitation of binding. FITC-VT1 B effectively competes for I-VT1/Gb3 raft binding. This assay will allow the definition of the optimal raft composition for VT1 (or any other ligand) binding. The effect of several potential cellular raft components are reported. Increased cholesterol content increased VT1 binding. Addition of phosphatidylethanolamine had minimal effect while phosphatidylserine was inhibitory. Although inclusion of sphingomyelin increased the Gb3 content of the "raft" reduced VT1 binding was seen. Inclusion of other glycolipids can also be inhibitory. The addition of globotetraosyl ceramide had no effect; however addition of sulfogalactosyl ceramide but not sulfogalactoglycerolipid inhibited VT1/Gb3 raft binding. These results suggest that certain GSLs can disfavor the formation of the appropriate 'raft' structure for ligand binding that this is dependent on both their carbohydrate lipid structure. Such "deceptor" GSLs may provide an as yet unappreciated mechanism for the regulation of cellular GSL receptor activity. This model is an effective tool to approach the dynamics ligand-binding specificity of GSL/cholesterol-containing lipid microdomains.  相似文献   

10.
The N-terminus of the type 1 interferon receptor subunit, IFNAR1, has high amino acid sequence similarity to the receptor binding B subunit of the Escherichia coli-derived verotoxin 1, VT1. The glycolipid, globotriaosyl ceramide (Gb(3): Gal alpha(1) --> 4 Gal beta 1 --> 4 Glu beta 1 --> 1 Cer) is the specific cell receptor for VT1. Gb(3)-deficient variant cells selected for VT resistance are cross-resistant to interferon-alpha (IFN-alpha)-mediated antiproliferative activity. The association of eIFNAR1 with Gal alpha 1 --> 4 Gal containing glycolipids has been previously shown to be important for the receptor-mediated IFN-alpha signal transduction for growth inhibition. The crucial role of Gb(3) for the signal transduction of IFN-alpha-mediated antiviral activity is now reported. IFN-alpha-mediated antiviral activity, nuclear translocation of activated Stat1, and increased expression of PKR were defective in Gb(3)-deficient vero mutant cells, although the surface expression of IFNAR1 was unaltered. The VT1B subunit was found to inhibit IFN-alpha-mediated antiviral activity, Stat1 nuclear translocation and PKR upregulation. Unlike VT1 cytotoxicity, IFN-alpha-induced Stat1 nuclear translocation was not inhibited when RME was prevented, suggesting that the accessory function of Gb(3) occurs at the plasma membrane. IFN-alpha antiviral activity was also studied in Gb(3)-positive MRC-5 cells, which are resistant to IFN-alpha growth inhibition, partially resistant to VT1 but still remain fully sensitive to IFN-alpha antiviral activity, and two astrocytoma cell lines expressing different Gb(3) fatty acid isoforms. In both systems, long chain fatty acid-containing Gb(3) isoforms, which are less effective to mediate VT1 cytotoxicity, were found to correlate with higher IFN-alpha-mediated antiviral activity. Inhibition of Gb(3) synthesis in toto prevented IFN-alpha antiviral activity in all cells. We propose that the long chain Gb(3) fatty isoforms preferentially remain in the plasma membrane, and by associating with IFNAR1, mediate IFN-alpha antiviral signaling, whereas short chain Gb(3) fatty acid isoforms are preferentially internalized to mediate VT1 cytotoxicity and IFNAR1-dependent IFN-alpha growth inhibition.  相似文献   

11.
12.
Escherichia coli-derived verotoxin is an extremely toxic protein and is highly selective toward certain primate cells. Two susceptible cell lines are the Daudi cell line (human Burkitt lymphoma) and the Vero cell line (Green African monkey kidney). Both of these cell lines contain significant levels of the verotoxin binding glycolipid globotriosylceramide (Gb3) (1 nmol/10(7) cells and 3 nmol/10(6) cells, respectively). A clone was selected from the Vero cell line for resistance to Verotoxin 2, while a mutant from the Daudi cell line was selected for resistance to Verotoxin 1. Both were found to be deficient in globotriosylceramide with a corresponding increase in the precursor glycolipid lactosylceramide. Cell free assay of alpha-galactosyltransferase activity revealed that the Vero cell clone (VRP) contained significantly reduced enzyme activity, whereas in the case of the Daudi mutant (VT20), no significant decrease in activity was noted in vitro. These observations suggest a complex regulation of Gb3 biosynthesis which is considered in relation to P blood group antigen expression.  相似文献   

13.
T Ariga  K Yoshida  K Nemoto  M Seki  N Miyatani  R K Yu 《Biochemistry》1991,30(32):7953-7961
We have studied the glycolipid composition of six different murine myelogenous leukemias as well as that of T-cell leukemias and normal spleen cells. Neutral and acidic lipid fractions were isolated by column chromatography on DEAE-Sephadex and analyzed by high-performance thin-layer chromatography (HPTLC) and an HPTLC overlay method. Murine myelogenous leukemias were found to contain globo- and ganglio-series neutral glycolipids, e.g., glucosylceramide (Glc-cer), lactosylceramide (Lac-cer), globotriaosylceramide (Gb3), globoside (Gb4), Forssman glycolipid (Gb5), and asialo-GM1 (GA1). Monoblastic leukemia cells contained increased proportions of Gb3, Gb4, Gb5, and GA1. Monocytic and myelomonocytic leukemia cells contained increased proportions of Glc-cer and Lac-cer. Especially, Glc-cer accounted for approximately 60% of the total neutral glycolipids in monocytic leukemia cells. Gb3 was the major neutral glycolipid in reticulum cell neoplasm type A, and it accounted for approximately 75% of the neutral glycolipids. GA1 was the major neutral glycolipid in myeloblastic and granulocytic leukemia cells as well as T-cell leukemias. Especially, granulocytic leukemia cells contained predominantly GA1, and it accounted for approximately 80% of the total neutral glycolipids. The pattern of gangliosides in myelogenous leukemias was more complex when compared with that of the neutral glycolipids; murine myelogenous leukemias contained at least 13 gangliosides, including such major gangliosides as GM1, GM1b containing N-acetyl neuraminic acid and N-glycolyl neuraminic acid, and Ga1NAc-GM1b. Alterations of glycolipid composition in murine myeloid leukemias may be associated with cellular differentiation and maturation, and therefore these characteristic glycolipid species may be regarded as markers for specific populations of leukemia cells.  相似文献   

14.
Glycolipids are important biological molecules that modulate cellular recognitions and pathogen adhesions. In this paper, we report a sensitive glycolipid microarray for non-covalently immobilizing glycolipids on a microarray substrate and we perform a set of immunoassays to explore glycolipid-protein interactions. This substrate utilizes a three-dimensional hydrazide-functionalized dendrimer monolayer attached onto a microscopic glass surface, which possesses the characteristics to adsorb glycoliplids non-covalently and facilitates multivalent attributes on the substrate surface. In the proof-of-concept experiments, gangliosides such as GM1, FucGM1, GM3, GD1b, GT1b, and GQ1b, and a lipoarabinomannan were tested on the substrate and interrogated with toxins and antibodies. The resulting glycolipid microarrays exhibited hypersensitivity and specificity for detection of glycolipid-protein interactions. In particular, a robust and specific binding of a pentameric cholera toxin B subunit to the GM1 glycolipid spotted on the array has demonstrated its superiority in sensitivity and specificity. In addition, this glycolipid microarray substrate was used to detect lipoarabinomannan in buffer within a limit-of-detection of 125 ng/mL. Furthermore, Mycobacterium tuberculosis (Mtb) Lipoarabinomannan was tested in human urine specimens on this platform, which can effectively identify urine samples either infected or not infected with Mtb. The results of this work suggest the possibility of using this glycolipid microarray platform to fabricate glycoconjugate microarrays, which includes free glycans and glycolipids and potential application in detection of pathogen and toxin.  相似文献   

15.
The pentameric B subunit of verotoxin (VT) mediates the attachment to cell surface globotriaosyl ceramide (Gb3) to facilitate receptor-mediated endocytosis of the toxin. In highly toxin-sensitive tumor cells, the holotoxin and VT1 B subunit is targeted intracellularly to elements of the endoplasmic reticulum (ER)/nuclear membrane. In less sensitive cells, the toxin is targeted to components of the Golgi apparatus. We have studied two cell systems: the induced VT hypersensitivity of human astrocytoma cell lines cultured in the presence of sodium butyrate (compared to sodium propionate and capronate) and the increased VT sensitivity of multiple drug-resistant mutants as compared to parental human ovarian carcinoma cells. In both cases, a difference in the intracellular retrograde transport of the receptor-bound internalized toxin to the ER/nuclear envelope, as opposed to the Golgi, correlated with a >1,000-fold increase in cell sensitivity to VT. This change in intracellular routing may be due to sorting of Gb3 fatty acid isoforms, since nuclear targeting was found in turn to correlate with the preferential synthesis of Gb3 containing shorter chain (primarily C16) fatty acid species. We propose that the isoform-dependent traffic of Gb3 from the cell surface to the ER/nuclear membrane provides a new signal transduction pathway for Gb3 binding proteins.  相似文献   

16.

Background

Immunologically distinct forms of Shiga toxin (Stx1 and Stx2) display different potencies and disease outcomes, likely due to differences in host cell binding. The glycolipid globotriaosylceramide (Gb3) has been reported to be the receptor for both toxins. While there is considerable data to suggest that Gb3 can bind Stx1, binding of Stx2 to Gb3 is variable.

Methodology

We used isothermal titration calorimetry (ITC) and enzyme-linked immunosorbent assay (ELISA) to examine binding of Stx1 and Stx2 to various glycans, glycosphingolipids, and glycosphingolipid mixtures in the presence or absence of membrane components, phosphatidylcholine, and cholesterol. We have also assessed the ability of glycolipids mixtures to neutralize Stx-mediated inhibition of protein synthesis in Vero kidney cells.

Results

By ITC, Stx1 bound both Pk (the trisaccharide on Gb3) and P (the tetrasaccharide on globotetraosylceramide, Gb4), while Stx2 did not bind to either glycan. Binding to neutral glycolipids individually and in combination was assessed by ELISA. Stx1 bound to glycolipids Gb3 and Gb4, and Gb3 mixed with other neural glycolipids, while Stx2 only bound to Gb3 mixtures. In the presence of phosphatidylcholine and cholesterol, both Stx1 and Stx2 bound well to Gb3 or Gb4 alone or mixed with other neutral glycolipids. Pre-incubation with Gb3 in the presence of phosphatidylcholine and cholesterol neutralized Stx1, but not Stx2 toxicity to Vero cells.

Conclusions

Stx1 binds primarily to the glycan, but Stx2 binding is influenced by residues in the ceramide portion of Gb3 and the lipid environment. Nanomolar affinities were obtained for both toxins to immobilized glycolipids mixtures, while the effective dose for 50% inhibition (ED50) of protein synthesis was about 10−11 M. The failure of preincubation with Gb3 to protect cells from Stx2 suggests that in addition to glycolipid expression, other cellular components contribute to toxin potency.  相似文献   

17.
Previous studies have indicated that globotriaosyl ceramide (Gb3 or CD77) plays a role in -interferon signal transduction and CD19-mediated homotypic adhesion in B cell lines derived from Burkitt's lymphoma. These roles for Gb3 may involve the proteins IFNAR-1 (subunit 1 of the interferon- receptor) and CD19, respectively, both of which have potential Gb3-binding sites in their extracellular domains which resemble those of the verotoxin (Shiga toxin and Shiga-like toxin) B subunit. The majority of this work was performed using wild-type Daudi cells and a single, Gb3-deficient mutant cell line, VT500. In the present investigations, these and additional Daudi-derived cells with varying degrees of sensitivity to interferon- were examined for Gb3 expression, interferon-induced growth inhibition and CD19 expression. The degree of interferon-induced growth inhibition and CD19 expression correlated with Gb3 expression in the various cell lines tested. In addition, reconstitution of the VT500 cell line with Gb3 but not other glycolipids partially restored the sensitivity of cells to IFN-induced growth inhibition. The degree to which reconstitution restored sensitivity to growth inhibition was similar to the results of previous studies in which Gb3 reconstitution restored sensitivity to verotoxin-induced cytotoxicity. These results demonstrate that Gb3 is specifically required for IFN-induced growth inhibition in Daudi cells and provide further evidence of a role for Gb3 in CD19 expression and function in these cells.  相似文献   

18.
The globotriaosylceramide (Gb3) verotoxin (VT) interaction is one of several examples of glycolipid receptors where the ceramide (or lipid) free oligosaccharides fail to show the expected binding parameters. We present a novel, yet simple strategy to synthesize monovalent, water soluble glycosphingolipid mimics which retain receptor function. Replacing the fatty acid chain with rigid, three dimensional hydrocarbon frames, such as adamantane, gives a novel class of neohydrocarbon glycoconjugates. Such adamantyl conjugates derived from Gb3 showed significantly enhanced solubility in water compared to natural Gb3. Adamantyl-Gb3 showed a thousand fold enhanced inhibitory activity (IC50 = 1 microM) for VT-Gb3 binding as compared to a lipid free Gb3 oligosaccharide derivative, alphaGal1-4betaGal1-4betaGlc1-O-CH2CH(CH2SO2C 4H9)2 (IC50 > 2 mM). This represents a new approach to the generation of antagonists of glycolipid receptors.  相似文献   

19.
Inefficient nuclear incorporation of foreign DNA remains a critical roadblock in the development of effective nonviral gene delivery systems. DNA delivered by traditional protocols remains within endosomal/lysosomal vesicles, or is rapidly degraded in the cytoplasm. Verotoxin I (VT), an AB(5) subunit toxin produced by enterohaemorrhagic Escherichia coli, binds to the cell surface glycolipid, globotriaosylceramide (Gb(3)) and is internalized into preendosomes. VT is then retrograde transported to the Golgi, endoplasmic reticulum (ER), and nucleus of highly VT-sensitive cells. We have utilized this nuclear targeting of VT to design a unique delivery system which transports exogenous DNA via vesicular traffic to the nucleus. The nontoxic VT binding subunit (VTB) was fused to the lambda Cro DNA-binding repressor, generating a 14-kDa VTB-Cro chimera. VTB-Cro binds specifically via the Cro domain to a 25-bp DNA fragment containing the consensus Cro operator. VTB-Cro demonstrates simultaneous specific binding to Gb(3). Treatment of Vero cells with fluorescent-labeled Cro operator DNA in the presence of VTB-Cro, results in DNA internalization to the Golgi, ER, and nucleus, whereas fluorescent DNA alone is incorporated poorly and randomly within the cytoplasm. VTB-Cro mediated nuclear DNA transport is prevented by brefeldin A, consistent with Golgi/ER intracellular routing. Pretreatment with filipin had no effect, indicating that caveoli are not involved. This novel VTB-Cro shuttle protein may find practical applications in the fields of intracellular targeting, gene delivery, and gene therapy.  相似文献   

20.
The specificity of Campylobacter pylori cell surface lectin, a presumptive colonization factor, was investigated using various sulfated and sialic acid containing glycolipids. C. pylori cells, cultured from human antral mucosal biopsies, were incubated with intact and modified glycolipid preparations and examined for agglutination inhibition of human erythrocytes. Titration data revealed that the inhibitory activity was highest with lactosylceramide sulfate and GM3 ganglioside, while galactosylceramide sulfate GM1, GD1a and GD1b gangliosides were less effective. A strong inhibitory activity towards C. pylori hemagglutin was also observed with an antiulcer agent, sucralfate. The inhibitory effect of both types of glycolipids was abolished by the removal of sialic acid and sulfate ester groups, thus indicating that sulfated and sialic acid containing glycolipids with terminal lactosyl moieties serve as mucosal receptors for colonization of gastric epithelium by C. pylori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号