首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dai R  Ali MK  Lezcano N  Bergson C 《Neuro-Signals》2008,16(2-3):112-123
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.  相似文献   

2.
The ‘cross‐talk’ between different types of neurotransmitters through second messenger pathways represents a major regulatory mechanism in neuronal function. We investigated the effects of activation of protein kinase C (PKC) on cAMP‐dependent signaling by structurally related human D1‐like dopaminergic receptors. Human embryonic kidney 293 (HEK293) cells expressing D1 or D5 receptors were pretreated with phorbol‐12‐myristate‐13‐acetate (PMA), a potent activator of PKC, followed by analysis of dopamine‐mediated receptor activation using whole cell cAMP assays. Unpredictably, PKC activation had completely opposite effects on D1 and D5 receptor signaling. PMA dramatically augmented agonist‐evoked D1 receptor signaling, whereas constitutive and dopamine‐mediated D5 receptor activation were rapidly blunted. RT–PCR and immunoblotting analyses showed that phorbol ester‐regulated PKC isozymes (conventional: α, βI, βII, γ; novel: δ, ?, η, θ) and protein kinase D (PKCµ) are expressed in HEK293 cells. PMA appears to mediate these contrasting effects through the activation of Ca2+‐independent novel PKC isoforms as revealed by specific inhibitors, bisindolylmaleimide I, Gö6976, and Gö6983. The finding that cross‐talk between PKC and cAMP pathways can produce such opposite outcomes following the activation of structurally similar D1‐like receptor subtypes is novel and further strengthens the view that D1 and D5 receptors serve distinct functions in the mammalian nervous and endocrine systems.  相似文献   

3.
Dopamine is an important neurotransmitter in vertebrate and invertebrate nervous systems and is widely distributed in the brain of the honey bee, Apis mellifera. We report here the functional characterization and cellular localization of the putative dopamine receptor gene, Amdop3, a cDNA clone isolated and identified in previous studies as AmBAR3 (Apis mellifera Biogenic Amine Receptor 3). The Amdop3 cDNA encodes a 694 amino acid protein, AmDOP3. Comparison of AmDOP3 to Drosophila melanogaster sequences indicates that it is orthologous to the D2-like dopamine receptor, DD2R. Using AmDOP3 receptors expressed in HEK293 cells we show that of the endogenous biogenic amines, dopamine is the most potent AmDOP3 agonist, and that activation of AmDOP3 receptors results in down regulation of intracellular levels of cAMP, a property characteristic of D2-like dopamine receptors. In situ hybridization reveals that Amdop3 is widely expressed in the brain but shows a pattern of expression that differs from that of either Amdop1 or Amdop2, both of which encode D1-like dopamine receptors. Nonetheless, overlaps in the distribution of cells expressing Amdop1, Amdop2 and Amdop3 mRNAs suggest the likelihood of D1:D2 receptor interactions in some cells, including subpopulations of mushroom body neurons.  相似文献   

4.
It has been shown lately that activity of G protein-coupled receptors (GPCRs) is regulated by an array of proteins binding to carboxy (C)-terminus of GPCRs. Proteins of 4.1 family are subsets of subcortical cytoskeletal proteins and are known to stabilize cellular structures and proteins at the plasma membrane. One of the 4.1 family proteins, 4.1G has been shown to interact with the C-terminus of GPCRs and regulate intracellular distribution of the receptors, including parathyroid hormone (PTH)/PTH-related protein receptor (PTHR). PTHR is coupled to trimeric G proteins Gs and Gq, which activate the adenylyl cyclase/cyclic AMP (cAMP) pathway and phospholipase C pathway, respectively. During the course of investigation of the role of 4.1G on adenylyl cyclase/cAMP signaling pathway, we found that 4.1G suppressed forskolin-induced cAMP production in cells. The cAMP accumulation induced by forskolin was decreased in HEK293 cells overexpressing 4.1G or increased in 4.1G-knockdown cells. Furthermore, PTH -(1-34)-stimulated cAMP production was also suppressed in the presence of exogenously expressed 4.1G despite its activity to increase the distribution of PTHR to the cell surface. In cells overexpressing FERM domain-deleted 4.1G, a mutant form of the protein deficient in plasma membrane distribution, neither forskolin-induced nor PTH -(1-34)-stimulated cAMP production was not altered. The suppression of the forskolin-induced cAMP production was observed even in membrane preparations of 4.1G-overexpressing cells. In 4.1G-knockdown HEK293 cells, plasma membrane distribution of adenylyl cyclase 6, one of the major subtypes of the enzyme in the cells, showed a slight decrease, in spite of the increased production of cAMP in those cells when stimulated by forskolin. Also, cytochalasin D treatment did not cause any influence on forskolin-induced cAMP production in HEK293 cells. These data indicate that plasma membrane-associated 4.1G regulates GPCR-mediated Gs signaling by suppressing adenylyl cyclase-mediated cAMP production.  相似文献   

5.
We examined the agonist-dependent sequestration/internalization of dopamine D2 receptor (the long form D2L and short form D2S), which were transiently expressed in COS-7 and HEK 293 cells with or without G-protein-coupled receptor kinases (GRK2 or GRK5). Sequestration was assessed quantitatively by loss of [3H] sulpiride-binding activity from the cell surface and by transfer of [3H] spiperone-binding activity from the membrane fraction to the light vesicle fraction in sucrose-density gradients. In COS-7 cells expressing D2 receptors alone, virtually no sequestration was observed with or without dopamine (< 4%). When GRK2 was coexpressed, 50% of D2S receptors and 36% of D2L receptors were sequestered by treatment with 10(-4) M dopamine for 2 h, whereas no sequestration was observed in cells expressing the dominant negative form of GRK2 (DN-GRK2). When GRK5 was coexpressed, 36% of D2S receptors were sequestered following the same treatment. The agonist-dependent and GRK2-dependent sequestration of D2S receptors was reduced markedly in the presence of hypertonic medium containing 0.45 M sucrose, suggesting that the sequestration follows the clathrin pathway. Internalization of D2S receptors was also assessed by immunofluorescence confocal microscopy. Translocation of D2 receptors from the cell membrane to intracellular vesicles was observed following the treatment with dopamine from HEK 293 cells only when GRK2 was coexpressed. D2S receptors expressed in HEK 293 cells were shown to be phosphorylated by GRK2 in an agonist-dependent manner. These results indicate that the sequestration of D2 receptors occurs only through a GRK-mediated pathway.  相似文献   

6.
Melatonin receptors belong to the superfamily of G protein-coupled receptors. Cloning of Mel1c receptors expressed in Xenopus skin revealed the existence of a polymorphism for these receptors. Heterologous expression of the two allelic isoforms, called Mel1c(alpha) and Mel1c(beta), indicated functional differences in their signalling properties. Both isoforms are coupled to the cAMP and cGMP pathways. However, the alpha isoform is preferentially coupled to the cAMP pathway, whereas the beta isoform couples preferentially to the cGMP pathway. Coupling differences may be explained by the fact that five of the six amino acid substitutions between the two isoforms are localized within intracellular receptor regions potentially involved in G protein coupling. Allelic isoforms were also observed for Mel1a receptors expressed in ovine pars tuberalis, suggesting that polymorphism is a general feature of the melatonin receptor family. We also evaluated the potential of the two human melatonin receptor subtypes, Mel1a and Mel1b, to modulate the cGMP pathway. Melatonin inhibited intracellular cGMP levels in a dose-dependent manner in HEK293 cells transfected with the human Mel1b receptor. This was not the case for HEK293 cells transfected with the human Mel1a receptor. In conclusion, our results indicate that the expression of receptor subtypes and isoforms may permit differential signalling between melatonin receptors.  相似文献   

7.
D(1) dopamine receptors are primary mediators of dopaminergic signaling in the CNS. These receptors internalize rapidly following agonist-induced activation, but the functional significance of this process is unknown. We investigated D(1) receptor endocytosis and signaling in HEK293 cells and cultured striatal neurons using real-time fluorescence imaging and cAMP biosensor technology. Agonist-induced activation of D(1) receptors promoted endocytosis of receptors with a time course overlapping that of acute cAMP accumulation. Inhibiting receptor endocytosis blunted acute D(1) receptor-mediated signaling in both dissociated cells and striatal slice preparations. Although endocytic inhibition markedly attenuated acute cAMP accumulation, inhibiting the subsequent recycling of receptors had no effect. Further, D(1) receptors localized in close proximity to endomembrane-associated trimeric G protein and adenylyl cyclase immediately after endocytosis. Together, these results suggest a previously unanticipated role of endocytosis, and the early endocytic pathway, in supporting rapid dopaminergic neurotransmission.  相似文献   

8.
Oxidation products of the naturally occurring phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), which are known as OxPAPC, accumulate in atherosclerotic lesions and at other sites of inflammation in conditions such as septic inflammation and acute lung injury to exert pro- or anti-inflammatory effects. It is currently unknown whether OxPAPC also contributes to inflammatory pain and peripheral neuronal excitability in these conditions. Here, we observed that OxPAPC dose-dependently and selectively activated human TRPA1 nociceptive ion channels expressed in HEK293 cells in vitro, without any effect on other TRP channels, including TRPV1, TRPV4 and TRPM8. OxPAPC agonist activity was dependent on essential cysteine and lysine residues within the N-terminus of the TRPA1 channel protein. OxPAPC activated calcium influx into a subset of mouse sensory neurons which were also sensitive to the TRPA1 agonist mustard oil. Neuronal OxPAPC responses were largely abolished in neurons isolated from TRPA1-deficient mice. Intraplantar injection of OxPAPC into the mouse hind paw induced acute pain and persistent mechanical hyperalgesia and this effect was attenuated by the TRPA1 inhibitor, HC-030031. More importantly, we found levels of OxPAPC to be significantly increased in inflamed tissue in a mouse model of chronic inflammatory pain, identified by the binding of an OxPAPC-specific antibody. These findings suggest that TRPA1 is a molecular target for OxPAPC and OxPAPC may contribute to chronic inflammatory pain through TRPA1 activation. Targeting against OxPAPC and TRPA1 signaling pathway may be promising in inflammatory pain treatment.  相似文献   

9.
The corticotropin releasing factor (CRF) type 1alpha receptor, a member of the G protein-coupled receptor (GPCR) subfamily B, is involved in the aetiology of anxiety and depressive disorders. In the present study, we examined the internalization and trafficking of the CRF1alpha receptor in both human embryonic kidney (HEK)293 cells and primary cortical neurons. We found that CRF1alpha receptor activation leads to the selective recruitment of beta-arrestin2 in both HEK293 cells and neurons. We observed distinct distribution patterns of CRF1alpha receptor and beta-arrestin2 in HEK293 cells and cortical neurons. In HEK293 cells, beta-arrestin2-green fluorescent protein (GFP) co-localized with CRF1alpha receptor in vesicles at the plasma membrane but was dissociated from the receptor in endosomes. In contrast, in primary cortical neurons, beta-arrestin2 and CRF1alpha receptor were internalized in distinct endocytic vesicles. By bioluminescence resonance energy transfer, we demonstrated that beta-arrestin2 association with CRF1alpha receptor was increased in cells transfected with G protein-coupled receptor kinase (GRK)3 and GRK6 and decreased in cells transfected with GRK2 and GRK5. In both HEK293 cells and cortical neurons, internalized CRF1alpha receptor transited from Rab5-positive early endosomes to Rab4-positive recycling endosomes and was not targeted to lysosomes. However, CRF1alpha receptor resensitization was blocked by the overexpression of wild-type, but not dominant-negative, Rab5 and Rab4 GTPases. Taken together, our results suggest that beta-arrestin trafficking differs between HEK293 cells and neurons, and that CRF1alpha receptor resensitization is regulated in an atypical manner by Rab GTPases.  相似文献   

10.
The vanilloid receptor VR1 is an ion channel predominantly expressed by primary sensory neurons involved in nociception. Here we describe its biochemical properties and assess the subcellular localization, the glycosylation state and the quaternary structure of VR1 expressed in HEK293 cells and in the DRG-derived cell line F-11 (N18TG2 mouse neuroblastoma x rat dorsal root ganglia, hybridoma). VR1 was found to be glycosylated in both cell types. Of the five potential N-glycosylation sites, the predicted transient receptor potential channel-like transmembrane folding proposes N604 is localized extracellularly. We used site-directed mutagenesis to mutate the Asn at position 604 to Thr. This mutated VR1 was not glycosylated, confirming the extracellular location of N604 and its role as the exclusive site of glycosylation of the VR1 protein. VR1 occured in high molecular mass complexes as assessed by blue native PAGE. In the presence of limited amounts of SDS dimers, trimers and tetramers of VR1 were observed, consistent with the predicted tetrameric quaternary structure of the receptor. Cross-linking with dimethyladipimidate yielded almost exclusively dimers. Whereas VR1 localized both to the plasma membrane and to intracellular membranes in HEK293 cells, it localized predominantly to the plasma membrane in F-11 cells. Using confocal laserscanning microscopy, we observed an enrichment of anti-VR1 immunoreactivity in neurite-like structures of F-11 cells. In the light of conflicting literature data on biochemical characteristics of VR1, our data suggest that dorsal root ganglion-derived F-11 cells provide a powerful experimental system for the study of VR1 biochemistry.  相似文献   

11.
12.
Arachidonic acid metabolites as mediators of synaptic modulation   总被引:1,自引:0,他引:1  
The neurotransmitters histamine, dopamine and the peptide Phe-Met-Arg-Phe-NH2 (FMRFa) cause presynaptic inhibition in the nervous system of the marine mollusk Aplysia Californica by combined down-modulation of a Ca++ conductance and up-modulation of a K+ conductance. The action of FMRFa on the S-type K+ channels of Aplysia sensory neurons is mediated by a metabolite of the 12-lipoxygenase pathway of arachidonic acid, possibly 12-HPETE. A Pertussis toxin-sensitive GTP binding protein couples FMRFa receptor to the activation of the arachidonic cascade. Once produced, 12-HPETE does not require ATP- or GTP-dependent processes to act on the K+ channels, but it may directly modulate the channel via an external membrane receptor. Based on this observation, a role for eicosanoids as possible intercellular messengers in the C.N.S. is discussed.  相似文献   

13.
14.
Biogenic amine receptors mediate wide-ranging hormonal and modulatory functions in vertebrates, but are largely unknown in primitive invertebrates. In a representative of the most basal multicellular animals possessing a nervous system, the cnidarian Renilla koellikeri, aminergic-like receptors were previously characterized pharmacologically and found to engender control of the animal's bioluminescent and peristaltic reactions. Using degenerate oligonucleotides in a RT-PCR strategy, we obtained a full-length cDNA encoding a polypeptide with typical G protein-coupled receptor (GPCR) characteristics and which displayed a significant degree of sequence similarity (up to 45%) to biogenic amine receptors, particularly dopamine and adrenergic receptors. The new receptor, named Ren1, did not resemble any one specific type of amine GPCR and thus could not be identified on the basis of sequence. Ren1 was expressed transiently and stably in cultured mammalian cells, as demonstrated by immunocytochemistry and western blotting. Functional analysis of transfected HEK293, LTK- and COS-7 cells, based on both cAMP and Ca2+ signalling assays, revealed that Ren1 was not activated by any of the known biogenic amines tested and several related metabolites. The results indicated, however, that cells stably expressing Ren1 contained, on average, an 11-fold higher level of cAMP than the controls, in the absence of agonist stimulation. The high basal cAMP levels were shown to be specific for Ren1 and to vary proportionally with the level of Ren1 expressed in the transfected cells. Taken together, the data suggested that Ren1 was expressed as a constitutively active receptor. Its identification provides a basis for examination of the early evolutionary emergence of GPCRs and their functional properties.  相似文献   

15.
Eugenol has sedative, antioxidant, anti-inflammatory, and analgesic effects, but also serves as an irritant through the regulation of a different set of ion channels. Activation of gamma aminobutyric acid (GABA) receptors on sensory neurons leads to the stabilization of neuronal excitability but contributes to formalin-induced inflammatory pain. In this study, we examined the effect of eugenol on the GABA-induced current in rat trigeminal ganglia (TG) neurons and in human embryonic kidney (HEK) 293 cells expressing the GABAA receptor α1β2γ2 subtype using the whole-cell patch clamp technique. RT-PCR and Western blot analysis were used to confirm the expression of GABAA receptor γ2 subunit mRNA and protein in the TG and hippocampus. Eugenol decreased the amplitude ratio of the GABA-induced current to 27.5 ± 3.2% (p < 0.05) in TG neurons, which recovered after a 3-min washout. In HEK 293 cells expressing the α1β2γ2 subtype, eugenol inhibited GABA-induced currents in a dose-dependent manner. Application of eugenol also decreased the GABA response in the presence of a G-protein blocker. Eugenol pretreatment with different concentrations of GABA resulted in similar inhibition of the GABA-induced current in a non-competitive manner. In conclusion, eugenol inhibits the GABA-induced current in TG neurons and HEK 293 cells expressing the GABAA receptor in a reversible, dose-dependent, and non-competitive manner, but not via the G-protein pathway. We suggest that the GABAA receptor could be a molecular target for eugenol in the modulation of nociceptive information.  相似文献   

16.
The chemokine receptor, CCR-5, a G protein-coupled receptor (GPCR) which mediates chemotactic responses of certain leukocytes, has been shown to serve as the primary co-receptor for macrophage-tropic human immunodeficiency virus type 1 (HIV-1). Here we describe functional coupling of CCR-5 to inhibition of forskolin-stimulated cAMP formation via a pertussis toxin-sensitive G(i) protein mechanism in transfected HEK 293 cells. In response to chemokines, CCR-5 was desensitized, phosphorylated and sequestered like a prototypic GPCR only following overexpression of G protein-coupled receptor kinases (GRKs) and beta-arrestins in HEK 293 cells. The lack of CCR-5 desensitization in HEK 293 cells in the absence of GRK overexpression suggests that differences in cellular complements of GRK and/or beta-arrestin proteins could represent an important mechanism determining cellular responsiveness. When tested, the activity of CCR-5 as an HIV-1 co-receptor was dependent neither upon its ability to signal nor its ability to be desensitized and internalized following agonist stimulation. Thus, while chemokine-promoted cellular signaling, phosphorylation and internalization of CCR-5 may play an important role in regulation of chemotactic responses in leukocytes, these functions are dissociable from its HIV-1 co-receptor function.  相似文献   

17.
The duration as well as the magnitude of mitogen-activated protein kinase activation has been proposed to regulate gene expression and other specific intracellular responses in individual cell types. Activation of ERK1/2 by the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) is relatively sustained in alpha T3-1 pituitary gonadotropes and HEK293 cells but is transient in immortalized GT1-7 neurons. Each of these cell types expresses the epidermal growth factor receptor (EGFR) and responds to EGF stimulation with significant but transient ERK1/2 phosphorylation. However, GnRH-induced ERK1/2 phosphorylation caused by EGFR transactivation was confined to GT1-7 cells and was attenuated by EGFR kinase inhibition. Neither EGF nor GnRH receptor activation caused translocation of phospho-ERK1/2 into the nucleus in GT1-7 cells. In contrast, agonist stimulation of GnRH receptors expressed in HEK293 cells caused sustained phosphorylation and nuclear translocation of ERK1/2 by a protein kinase C-dependent but EGFR-independent pathway. GnRH-induced activation of ERK1/2 was attenuated by the selective Src kinase inhibitor PP2 and the negative regulatory C-terminal Src kinase in GT1-7 cells but not in HEK293 cells. In GT1-7 cells, GnRH stimulated phosphorylation and nuclear translocation of the ERK1/2-dependent protein, p90RSK-1 (RSK-1). These results indicate that the duration of ERK1/2 activation depends on the signaling pathways utilized by GnRH in specific target cells. Whereas activation of the Gq/protein kinase C pathway in HEK293 cells causes sustained phosphorylation and translocation of ERK1/2 to the nucleus, transactivation of the EGFR by GnRH in GT1-7 cells elicits transient ERK1/2 signals without nuclear accumulation. These findings suggest that transactivation of the tightly regulated EGFR can account for the transient ERK1/2 responses that are elicited by stimulation of certain G protein-coupled receptors.  相似文献   

18.
19.
Expression of the calcitonin receptor-like receptor (CRLR) and its receptor activity modifying proteins (RAMPs) can produce calcitonin gene-related peptide (CGRP) receptors (CRLR/RAMP1) and adrenomedullin (AM) receptors (CRLR/RAMP2 or -3). A chimera of the CRLR and green fluorescent protein (CRLR-GFP) was used to study receptor localization and trafficking in stably transduced HEK 293 cells, with or without co-transfection of RAMPs. CRLR-GFP failed to generate responses to CGRP or AM without RAMPs. Furthermore, CRLR-GFP was not found in the plasma membrane and its localization was unchanged after agonist exposure. When stably coexpressed with RAMPs, CRLR-GFP appeared on the cell surface and was fully active in intracellular cAMP production and calcium mobilization. Agonist-mediated internalization of CRLR-GFP was observed in RAMP1/CGRP or AM, RAMP2/AM, and RAMP3/AM, which occurred with similar kinetics, indicating the existence of ligand-specific regulation of CRLR internalization by RAMPs. This internalization was strongly inhibited by hypertonic medium (0.45 m sucrose) and paralleled localization of rhodamine-labeled transferrin, suggesting that CRLR endocytosis occurred predominantly through a clathrin-dependent pathway. A significant proportion of CRLR was targeted to lysosomes upon binding of the ligands, and recycling of the internalized CRLR was not efficient. In HEK 293 cells stably expressing CRLR-GFP and Myc-RAMPs, these rhodamine-labeled RAMPs were co-localized with CRLR-GFP in the presence and absence of the ligands. Thus, the CRLR is endocytosed together with RAMPs via clathrin-coated vesicles, and both the internalized molecules are targeted to the degradative pathway.  相似文献   

20.
Among the melanocortins alpha-MSH is known to be involved in feeding behavior. These hormones mediate their effects through G protein-coupled receptors by stimulating adenylate cyclase. In this study, we have developed an in vitro expression model for human melanocortin 3 receptor (hMC3R) tagged at its C terminus with EGFP. The corresponding chimeric cDNA was stably expressed in HEK293 cells. The selected clones expressing the hMC3R-EGFP exhibited cell surface fluorescence and responded to NDP-MSH stimulation by producing cAMP in a dose-dependent manner (EC(50): 0.3 nM). Binding studies revealed a single class of binding sites with a K(D) of 2.24 nM. Moreover, Agouti-related protein was also demonstrated to be an antagonist of the hMC3R-EGFP. Thus, the hMC3R tagged with EGFP stably expressed in HEK293 cells, exhibiting the same characteristics than the wild-type hMC3R, is the only model of expression of this receptor allowing its direct localization inside living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号