首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DnaB is the primary replicative helicase in Escherichia coli. We show here that DnaB can unwind two duplex arms simultaneously for an extended distance provided that two protein rings are positioned on opposite sides of the duplex arms. A putative eukaryotic replication fork helicase, Mcm4,6,7, performs a similar activity. Double-ringed melting of duplexes may function at a replication fork in vivo. This mechanism may apply to RuvB, since the proteins share mechanistic similarities. Thus, two RuvB hexamers may function in coordination at a Holliday junction to overcome regions of DNA heterology and DNA lesions. Furthermore, DnaB can actively translocate along DNA while encircling three DNA strands. Therefore, if DnaB encounters a D loop during fork progression, it will encircle the invading strand and may convert the recombinative invading strand to a daughter lagging strand. Finally, we present evidence that the DNA binding site of DnaB is buried inside its central channel.  相似文献   

2.
DnaB is a ring-shaped, hexameric helicase that unwinds the E. coli DNA replication fork while encircling one DNA strand. This report demonstrates that DnaB can also encircle both DNA strands and then actively translocate along the duplex. With two strands positioned inside its central channel, DnaB translocates with sufficient force to displace proteins tightly bound to DNA with no resultant DNA unwinding. Thus, DnaB may clear proteins from chromosomal DNA. Furthermore, while encircling two DNA strands, DnaB can drive branch migration of a synthetic Holliday junction with heterologous duplex arms, suggesting that DnaB may be directly involved in DNA recombination in vivo. DnaB binds to just one DNA strand during branch migration. T7 phage gp4 protein also drives DNA branch migration, suggesting this activity generalizes to other ring-shaped helicases.  相似文献   

3.
DnaB helicase is a ring-shaped hexamer that unwinds DNA at a replication fork. To understand how this protein interacts with DNA during unwinding, DnaB from Thermus aquaticus was incubated with chemically modified forked-duplex DNA substrates and the unwinding rates were measured. Unwinding was inhibited by modifications made to the 5'-tail, but not the 3'-tail, suggesting that the helicase interacts with the 5'-tail but not the 3'-tail during unwinding. Using oligonucleotides of mixed polarity, it was confirmed that DnaB translocates in the 5' to 3' direction as it unwinds DNA. A substrate was synthesized that contained two duplexes in tandem. Experiments involving various modifications of this tandem duplex demonstrated that when the 3'-tail is short, two stands of DNA pass through the central channel of DnaB with no resultant unwinding. Thus, the role of the 3'-tail in stimulating unwinding has been elucidated. The 3'-tail does not bind to DnaB during unwinding, but sterically determines whether one or two DNA strands pass through the central channel of DnaB. Furthermore, a new substrate for DnaB locomotion has been discovered. DnaB may actively translocate in the 5' to 3' direction along single-stranded DNA, even when a complementary strand is also present within the protein's central channel. This new mode of action may regulate DnaB activity by inhibiting unwinding at regions of DNA that are not forked. Furthermore, this new function for DnaB may coordinate abortion of leading and lagging strand replication if a nick is encountered on the leading strand.  相似文献   

4.
Replicative DNA helicases are ring-shaped hexamers that play an essential role in DNA synthesis by separating the two strands of chromosomal DNA to provide the single-stranded (ss) substrate for replicative polymerases. Biochemical and structural studies suggest that these helicases translocate along one strand of the duplex, which passes through and interacts with the central channel of these ring-shaped hexamers, and displace the complementary strand. A number of these helicases were shown to also encircle both strands simultaneously and then translocate along double-stranded (ds)DNA. In this report it is shown that the Schizosaccharomyces pombe Mcm4,6,7 complex and archaeal minichromosome maintenance (MCM) helicase from Methanothermobacter thermautotrophicus move along duplex DNA. These two helicases, however, differ in the substrate required to support dsDNA translocation. Although the S. pombe Mcm4,6,7 complex required a 3'-overhang ssDNA region to initiate its association with the duplex, the archaeal protein initiated its transit along dsDNA in the absence of a 3'-overhang region, as well. Furthermore, DNA substrates containing a streptavidin-biotin steric block inhibited the movement of the eukaryotic helicase along ss and dsDNAs but not of the archaeal enzyme. The M. thermautotrophicus MCM helicase, however, was shown to displace a streptavidin-biotin complex from ss, as well as dsDNAs. The possible roles of dsDNA translocation by the MCM proteins during the initiation and elongation phases of chromosomal replication are discussed.  相似文献   

5.
Prokaryotic and eukaryotic replicative helicases can translocate along single-stranded and double-stranded DNA, with the central cavity of these multimeric ring helicases being able to accommodate both forms of DNA. Translocation by such helicases along single-stranded DNA results in the unwinding of forked DNA by steric exclusion and appears critical in unwinding of parental strands at the replication fork, whereas translocation over double-stranded DNA has no well-defined role. We have found that the accessory factor, DnaC, that promotes loading of the Escherichia coli replicative helicase DnaB onto single-stranded DNA may also act to confer DNA structure specificity on DnaB helicase. When present in excess, DnaC inhibits DnaB translocation over double-stranded DNA but not over single-stranded DNA. Inhibition of DnaB translocation over double-stranded DNA requires the ATP-bound form of DnaC, and this inhibition is relieved during translocation over single-stranded DNA indicating that stimulation of DnaC ATPase is responsible for this DNA structure specificity. These findings demonstrate that DnaC may provide the DNA structure specificity lacking in DnaB, limiting DnaB translocation to bona fide replication forks. The ability of other replicative helicases to translocate along single-stranded and double-stranded DNA raises the possibility that analogous regulatory mechanisms exist in other organisms.  相似文献   

6.
During origin-independent replisome assembly, the replication restart protein PriC prefers to load the replication fork helicase, DnaB, to stalled replication forks where there is a gap in the nascent leading strand. However, this activity can be obstructed if the 5'-end of the nascent lagging strand is near the template branch point. Here we provide biochemical evidence that the helicase activities of Rep and PriA function to unwind the nascent lagging strand DNA at such stalled replication forks. PriC then loads the replicative helicase, DnaB, onto the newly generated, single-stranded template for the purposes of replisome assembly and duplex unwinding ahead of the replication fork. Direct rescue of replication forks by the Rep-PriC and PriA-PriC pathways in this manner may contribute to genomic stability by avoiding the potential dangers of fork breakage inherent to recombination-dependent restart pathways.  相似文献   

7.
PriA and other primosome assembly proteins of Escherichia coli recruit the major replicative helicase DnaB for replisome assembly during bacteriophage Mu transposition and replication. MuA transposase catalyzes the transfer of Mu ends to target DNA, forming a potential replication fork that provides the assembly site for the replisome. However, this fork lacks the single-stranded DNA needed to load DnaB. Although no pre-existing primosome assembly sites that bind PriA were found within the Mu end sequences, PriA was able to bind to the forked DNA structure created by MuA. The helicase activity of PriA could then open the duplex to create the DnaB binding site. In a tightly coupled reaction on synthetic forked substrates, PriA promoted both the unwinding of the lagging strand arm and preprimosome assembly to load DnaB onto the lagging strand template. PriA apparently translocated 3' to 5' along the lagging strand template until sufficient single-stranded DNA was exposed for binding of DnaB, which then translocated 5' to 3' in the opposite direction. Mutant PriA lacking helicase activity was unable to promote this process, and loss of PriA helicase impaired Mu DNA replication in vivo and in vitro. This suggests that the opening of the duplex by PriA helicase is a critical step in the initiation of Mu DNA replication. Concerted helicase and primosome assembly functions would allow PriA to act as initiator on recombination intermediates and stalled replication forks. As part of the replisome, PriA may act as a mobile initiator that minimizes interruptions in chromosomal replication.  相似文献   

8.
The replicative helicase for bacteriophage T4 is gp41, which is a ring-shaped hexameric motor protein that achieves unwinding of dsDNA by translocating along one strand of ssDNA while forcing the opposite strand to the outside of the ring. While much study has been dedicated to the mechanism of binding and translocation along the ssDNA strand encircled by ring-shaped helicases, relatively little is known about the nature of the interaction with the opposite, ‘occluded’ strand. Here, we investigate the interplay between the bacteriophage T4 helicase gp41 and the ss/dsDNA fork by measuring, at the single-molecule level, DNA unwinding events on stretched DNA tethers in multiple geometries. We find that gp41 activity is significantly dependent on the geometry and tension of the occluded strand, suggesting an interaction between gp41 and the occluded strand that stimulates the helicase. However, the geometry dependence of gp41 activity is the opposite of that found previously for the E. coli hexameric helicase DnaB. Namely, tension applied between the occluded strand and dsDNA stem inhibits unwinding activity by gp41, while tension pulling apart the two ssDNA tails does not hinder its activity. This implies a distinct variation in helicase-occluded strand interactions among superfamily IV helicases, and we propose a speculative model for this interaction that is consistent with both the data presented here on gp41 and the data that had been previously reported for DnaB.  相似文献   

9.
The effect of two structural elements of a replication DNA fork substrate, the length of the 3' arm of the fork and the stability of the double-stranded DNA (dsDNA) part, on the kinetics of the dsDNA unwinding by the Escherichia coli hexameric helicase DnaB protein has been examined under single turnover conditions using the rapid quench-flow technique. The length of the 3' arm of the replication fork, i.e. the number of nucleotides in the arm, is a major structural factor that controls the unwinding rate and processivity of the helicase. The data show the existence of an optimal length of the 3' arm where there is the highest unwinding rate and processivity, indicating that during the unwinding process, the helicase transiently interacts with the 3' arm at a specific distance on the arm with respect to the duplex part of the DNA. Moreover, the area on the enzyme that engages in interactions has also a discrete size. For DNA substrates with the 3' arm containing 14, or less, nucleotide residues, the DnaB helicase becomes a completely distributive enzyme. However, the 3' arm is not a "specific activating cofactor" in the unwinding reaction. Rather, the 3' arm plays a role as a mechanical fulcrum for the enzyme, necessary to provide support for the advancing large helicase molecule on the opposite strand of the DNA. Binding of ATP is necessary to engage the 3' arm with the DnaB helicase, but it does not change the initial distribution of complexes of the enzyme with the DNA fork substrate. Stability of the dsDNA has a significant effect on the unwinding rate and processivity. The unwinding rate constant is a decreasing linear function of the fractional content of GC base-pairs in the dsDNA, indicating that the activation of the unwinding step is proportional to the stability of the nucleic acid.  相似文献   

10.
Helicases that unwind DNA at the replication fork are ring-shaped oligomeric enzymes that move along one strand of a DNA duplex and catalyze the displacement of the complementary strand in a reaction that is coupled to nucleotide hydrolysis. The helicase domain of the replicative helicase-primase protein from bacteriophage T7 crystallized as a helical filament that resembles the Escherichia coli RecA protein, an ATP-dependent DNA strand exchange factor. When viewed in projection along the helical axis of the crystals, six protomers of the T7 helicase domain resemble the hexameric rings seen in electron microscopic images of the intact T7 helicase-primase. Nucleotides bind at the interface between pairs of adjacent subunits where an arginine is near the gamma-phosphate of the nucleotide in trans. The bound nucleotide stabilizes the folded conformation of a DNA-binding motif located near the center of the ring. These and other observations suggest how conformational changes are coupled to DNA unwinding activity.  相似文献   

11.
Helicases unwind duplex DNA ahead of the polymerases at the replication fork. However, the identity of the eukaryotic replicative helicase has been controversial; in vivo studies implicate the ring-shaped heterohexameric Mcm2-7 complex, although only a specific subset of Mcm subunits (Mcm467) unwind DNA in vitro. To address this discrepancy, we have compared both Mcm assemblies and find that they differ in their linear single-stranded DNA association rate and their ability to bind circular single-stranded DNA. These differences depend upon the Mcm2/5 interface, which we hypothesize serves as an ATP-dependent "gate" within Mcm2-7. Importantly, we find that reaction conditions that putatively close the Mcm2-7 "gate" reconstitute Mcm2-7 helicase activity. Unlike Mcm467, Mcm2-7 helicase activity is strongly anion dependent. Our results show that purified Mcm2-7 acts as a helicase, provides functional evidence of a Mcm2/5 gate, and lays the foundation for future mechanistic studies of this critical factor.  相似文献   

12.
DNA binding and helicase actions of mouse MCM4/6/7 helicase   总被引:4,自引:1,他引:3  
You Z  Masai H 《Nucleic acids research》2005,33(9):3033-3047
Helicases play central roles in initiation and elongation of DNA replication. We previously reported that helicase and ATPase activities of the mammalian Mcm4/6/7 complex are activated specifically by thymine-rich single-stranded DNA. Here, we examined its substrate preference and helicase actions using various synthetic DNAs. On a bubble substrate, Mcm4/6/7 makes symmetric dual contacts with the 5′-proximal 25 nt single-stranded segments adjacent to the branch points, presumably generating double hexamers. Loss of thymine residues from one single-strand results in significant decrease of unwinding efficacy, suggesting that concurrent bidirectional unwinding by a single double hexameric Mcm4/6/7 may play a role in efficient unwinding of the bubble. Mcm4/6/7 binds and unwinds various fork and extension structures carrying a single-stranded 3′-tail DNA. The extent of helicase activation depends on the sequence context of the 3′-tail, and the maximum level is achieved by DNA with 50% or more thymine content. Strand displacement by Mcm4/6/7 is inhibited, as the GC content of the duplex region increases. Replacement of cytosine–guanine pairs with cytosine–inosine pairs in the duplex restored unwinding, suggesting that mammalian Mcm4/6/7 helicase has difficulties in unwinding stably base-paired duplex. Taken together, these findings reveal important features on activation and substrate preference of the eukaryotic replicative helicase.  相似文献   

13.
PriA helicase plays crucial roles in restoration of arrested replication forks. It carries a "3' terminus binding pocket" in its N-terminal DNA binding domain, which is required for high affinity binding of PriA to a fork carrying a 3'-end of a nascent leading strand at the branch. We show that the abrogation of the 3' terminus recognition either by a mutation in the 3' terminus binding pocket or by the bulky modification of the 3'-end leads to unwinding of the unreplicated duplex arm on this fork, causing potential fork destabilization. This indicates a critical role of the 3' terminus binding pocket of PriA in its "stable" binding at the fork for primosome assembly. In contrast, PriA unwinds the unreplicated duplex region on a fork without a 3'-end, potentially destabilizing the fork. However, this process is inhibited by RecG helicase, capable of regressing the fork until the 3'-end of the nascent leading strand reaches the branch. PriA now stably binds to this regressed fork, stabilizing it. Using a model arrest-fork-substrate, we reconstitute the above process in vitro with RecG and PriA proteins. Our results present a novel mechanism by which two helicases function in a highly coordinated manner to generate a structure in which an arrested fork is stabilized for further repair and/or replication restart.  相似文献   

14.
The replicative helicase for Escherichia coli is DnaB, a hexameric, ring-shaped motor protein that encircles and translocates along ssDNA, unwinding dsDNA in advance of its motion. The microscopic mechanisms of DnaB are unknown; further, prior work has found that DnaB's activity is modified by other replication proteins, indicating some mechanistic flexibility. To investigate these issues, we quantified translocation and unwinding by single DnaB molecules in three tethered DNA geometries held under tension. Our data support the following conclusions: 1), Unwinding by DnaB is enhanced by force-induced destabilization of dsDNA. 2), The magnitude of this stimulation varies with the geometry of the tension applied to the DNA substrate, possibly due to interactions between the helicase and the occluded ssDNA strand. 3), DnaB unwinding and (to a lesser extent) translocation are interrupted by pauses, which are also dependent on force and DNA geometry. 4), DnaB moves slower when a large tension is applied to the helicase-bound strand, indicating that it must perform mechanical work to compact the strand against the applied force. Our results have implications for the molecular mechanisms of translocation and unwinding by DnaB and for the means of modulating DnaB activity.  相似文献   

15.
The RuvAB proteins catalyze branch migration of Holliday junctions during DNA recombination in Escherichia coli. RuvA binds tightly to the Holliday junction, and then recruits two RuvB pumps to power branch migration. Previous investigations have studied RuvA in conjunction with its cellular partner RuvB. The replication fork helicase DnaB catalyzes branch migration like RuvB but, unlike RuvB, is not dependent on RuvA for activity. In this study, we specifically analyze the function of RuvA by studying RuvA in conjunction with DnaB, a DNA pump that does not work with RuvA in the cell. Thus, we use DnaB as a tool to dissect RuvA function from RuvB. We find that RuvA does not inhibit DnaB-catalyzed branch migration of a homologous junction, even at high concentrations of RuvA. Hence, specific protein-protein interaction is not required for RuvA mobilization during branch migration, in contrast to previous proposals. However, low concentrations of RuvA block DnaB unwinding at a Holliday junction. RuvA even blocks DnaB-catalyzed unwinding when two DnaB rings are acting in concert on opposite sides of the junction. These findings indicate that RuvA is intrinsically mobile at a Holliday junction when the DNA is undergoing branch migration, but RuvA is immobile at the same junction during DNA unwinding. We present evidence that suggests that RuvA can slide along a Holliday junction structure during DnaB-catalyzed branch migration, but not during unwinding. Thus, RuvA may act as a sliding collar at Holliday junctions, promoting DNA branch migration activity while blocking other DNA remodeling activities. Finally, we show that RuvA is less mobile at a heterologous junction compared to a homologous junction, as two opposing DnaB pumps are required to mobilize RuvA over heterologous DNA.  相似文献   

16.
Escherichia coli PriA is a primosome assembly protein with 3' to 5' helicase activity whose apparent function is to promote resumption of DNA synthesis following replication-fork arrest. Here, we describe how initiation of helicase activity on DNA forks is influenced by both fork structure and by single-strand DNA-binding protein. PriA could recognize and unwind forked substrates where one or both arms were primarily duplex, and PriA required a small (two bases or larger) single-stranded gap at the fork in order to initiate unwinding. The helicase was most active on substrates with a duplex lagging-strand arm and a single-stranded leading-strand arm. On this substrate, PriA was capable of translocating on either the leading or lagging strands to unwind the duplex ahead of the fork or the lagging-strand duplex, respectively. Fork-specific binding apparently orients the helicase domain to unwind the lagging-strand duplex. Binding of single-strand-binding protein to forked templates could inhibit unwinding of the duplex ahead of the fork but not unwinding of the lagging-strand duplex or translocation on the lagging-strand template. While single-strand-binding protein could inhibit binding of PriA to the minimal, unforked DNA substrates, it could not inhibit PriA binding to forked substrates. In the cell, single-strand-binding protein and fork structure may direct PriA helicase to translocate along the lagging-strand template of forked structures such that the primosome is specifically assembled on that DNA strand.  相似文献   

17.
Mcm proteins play an essential role in eukaryotic DNA replication, but their biochemical functions are poorly understood. Recently, we reported that a DNA helicase activity is associated with an Mcm4-Mcm6-Mcm7 (Mcm4,6,7) complex, suggesting that this complex is involved in the initiation of DNA replication as a DNA-unwinding enzyme. In this study, we have expressed and isolated the mouse Mcm2, 4,6,7 proteins from insect cells and characterized various mutant Mcm4,6,7 complexes in which the conserved ATPase motifs of the Mcm4 and Mcm6 proteins were mutated. The activities associated with such preparations demonstrated that the DNA helicase activity is intrinsically associated with the Mcm4,6,7 complex. Biochemical analyses of these mutant Mcm4,6,7 complexes indicated that the ATP binding activity of the Mcm6 protein in the complex is critical for DNA helicase activity and that the Mcm4 protein may play a role in the single-stranded DNA binding activity of the complex. The results also indicated that the two activities of DNA helicase and single-stranded DNA binding can be separated.  相似文献   

18.
19.
DNA polymerase and DNA helicase are essential components of DNA replication. The helicase unwinds duplex DNA to provide single-stranded templates for DNA synthesis by the DNA polymerase. In bacteriophage T7, movement of either the DNA helicase or the DNA polymerase alone terminates upon encountering a nick in duplex DNA. Using a minicircular DNA, we show that the helicase · polymerase complex can bypass a nick, albeit at reduced efficiency of 7%, on the non-template strand to continue rolling circle DNA synthesis. A gap in the non-template strand cannot be bypassed. The efficiency of bypass synthesis depends on the DNA sequence downstream of the nick. A nick on the template strand cannot be bypassed. Addition of T7 single-stranded DNA-binding protein to the complex stimulates nick bypass 2-fold. We propose that the association of helicase with the polymerase prevents dissociation of the helicase upon encountering a nick, allowing the helicase to continue unwinding of the duplex downstream of the nick.  相似文献   

20.
Minichromosome maintenance proteins (Mcm) are essential in all eukaryotes and are absolutely required for initiation of DNA replication. The eukaryotic and archaeal Mcm proteins have conserved helicase motifs and exhibit DNA helicase and ATP hydrolysis activities in vitro. Although the Mcm proteins have been proposed to be the replicative helicase, the enzyme that melts the DNA helix at the replication fork, their function during cellular DNA replication elongation is still unclear. Using nucleoplasmic extract (NPE) from Xenopus laevis eggs and six purified polyclonal antibodies generated against each of the Xenopus Mcm proteins, we have demonstrated that Mcm proteins are required during DNA replication and DNA unwinding after initiation of replication. Quantitative depletion of Mcms from the NPE results in normal replication and unwinding, confirming that Mcms are required before pre-replicative complex assembly and dispensable thereafter. Replication and unwinding are inhibited when pooled neutralizing antibodies against the six different Mcm2-7 proteins are added during NPE incubation. Furthermore, replication is blocked by the addition of the Mcm antibodies after an initial period of replication in the NPE, visualized by a pulse of radiolabeled nucleotide at the same time as antibody addition. Addition of the cyclin-dependent kinase 2 inhibitor p21(cip1) specifically blocks origin firing but does not prevent helicase action. When p21(cip1) is added, followed by the non-hydrolyzable analog ATPgammaS to block helicase function, unwinding is inhibited, demonstrating that plasmid unwinding is specifically attributable to an ATP hydrolysis-dependent function. These data support the hypothesis that the Mcm protein complex functions as the replicative helicase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号