首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-like growth factor-I (IGF-I) has been shown to attenuate protein degradation in murine myotubes induced by angiotensin II through downregulation of the ubiquitin-proteasome pathway, although the mechanism is not known. Angiotensin II is known to upregulate this pathway through a cellular signalling mechanism involving release of arachidonic acid, activation of protein kinase Calpha (PKCalpha), degradation of inhibitor-kappaB (I-kappaB) and nuclear migration of nuclear factor-kappaB (NF-kappaB), and all of these events were attenuated by IGF-I (13.2 nM). Induction of the ubiquitin-proteasome pathway has been linked to activation of the RNA-activated protein kinase (PKR), since an inhibitor of PKR attenuated proteasome expression and activity in response to angiotensin II and prevented the decrease in the myofibrillar protein myosin. Angiotensin II induced phosphorylation of PKR and of the eukaryotic initiation factor-2 (eIF2) on the alpha-subunit, and this was attenuated by IGF-I, by induction of the expression of protein phosphatase 1, which dephosphorylates PKR. Release of arachidonic acid and activation of PKCalpha by angiotensin II were attenuated by an inhibitor of PKR and IGF-I, and the effect was reversed by Salubrinal (15 muM), an inhibitor of eIF2alpha dephosphorylation, as was activation of PKCalpha. In addition myotubes transfected with a dominant-negative PKR (PKRDelta6) showed no release of arachidonate in response to Ang II, and no activation of PKCalpha. These results suggest that phosphorylation of PKR by angiotensin II was responsible for the activation of the PLA(2)/PKC pathway leading to activation of NF-kappaB and that IGF-I attenuates protein degradation due to an inhibitory effect on activation of PKR.  相似文献   

2.
3.
4.
5.
6.
7.
TNF-alpha induced a dose- and time-dependent increase in cyclooxygenase-2 (COX-2) expression and PGE2 formation in human NCI-H292 epithelial cells. Immunofluorescence staining demonstrated that COX-2 was expressed in cytosol and nuclear envelope. Tyrosine kinase inhibitors (genistein or herbimycin) or phosphoinositide-specific phospholipase C inhibitor (U73122) blocked TNF-alpha-induced COX-2 expression. TNF-alpha also stimulated phosphatidylinositol hydrolysis and protein kinase C (PKC) activity, and both were abolished by genistein or U73122. The PKC inhibitor, staurosporine, also inhibited TNF-alpha-induced response. The 12-O-tetradecanoylphorbol 13-acetate (TPA), a PKC activator, also stimulated COX-2 expression, this effect being inhibited by genistein or herbimycin. NF-kappaB DNA-protein binding and COX-2 promoter activity were enhanced by TNF-alpha, and these effects were inhibited by genistein, U73122, staurosporine, or pyrolidine dithiocarbamate. TPA stimulated both NF-kappaB DNA-protein binding and COX-2 promoter activity, these effects being inhibited by genistein, herbimycin, or pyrolidine dithiocarbamate. The TNF-alpha-induced, but not the TPA-induced, COX-2 promoter activity was inhibited by phospholipase C-gamma2 mutants, and the COX-2 promoter activity induced by either agent was attenuated by dominant-negative mutants of PKC-alpha, NF-kappaB-inducing kinase, or I-kappaB (inhibitory protein that dissociates from NF-kappaB) kinase (IKK)1 or 2. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by staurosporine or herbimycin. These results suggest that, in NCI-H292 epithelial cells, TNF-alpha might activate phospholipase C-gamma2 via an upstream tyrosine kinase to induce activation of PKC-alpha and protein tyrosine kinase, resulting in the activation of NF-kappaB-inducing kinase and IKK1/2, and NF-kappaB in the COX-2 promoter, then initiation of COX-2 expression and PGE2 release.  相似文献   

8.
9.
10.
The signaling pathway involved in TNF-alpha-induced cyclooxygenase-2 (COX-2) expression was further studied in human NCI-H292 epithelial cells. A protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or a Src kinase inhibitor (PP2) attenuated TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced COX-2 promoter activity. TNF-alpha- or TPA-induced I-kappaB kinase (IKK) activation was also blocked by these inhibitors, which reversed I-kappaBalpha degradation. Activation of c-Src and Lyn kinases, two Src family members, was inhibited by the PKC, tyrosine kinase, or Src kinase inhibitors. The dominant-negative c-Src (KM) mutant inhibited induction of COX-2 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKCalpha (PKCalpha A/E) or wild-type c-Src plasmids induced COX-2 promoter activity, and these effects were inhibited by the dominant-negative c-Src (KM), NF-kappaB-inducing kinase (NIK) (KA), or IKKbeta (KM) mutant. The dominant-negative PKCalpha (K/R) or c-Src (KM) mutant failed to block induction of COX-2 promoter activity caused by wild-type NIK overexpression. In coimmunoprecipitation experiments, IKKalpha/beta was found to be associated with c-Src and to be phosphorylated on its tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr(188) and Tyr(199), near the activation loop of IKKbeta, were identified to be crucial for NF-kappaB activation. Substitution of these residues with phenylalanines attenuated COX-2 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways cross-link between c-Src and NIK and converge at IKKalpha/beta, and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate COX-2 expression.  相似文献   

11.
In the present study the role of Akt/PKB (protein kinase B) in PIF- (proteolysis-inducing factor) induced protein degradation has been investigated in murine myotubes. PIF induced transient phosphorylation of Akt at Ser(473) within 30 min, which was attenuated by the PI3K (phosphoinositide 3-kinase) inhibitor LY294002 and the tyrosine kinase inhibitor genistein. Protein degradation was attenuated in myotubes expressing a dominant-negative mutant of Akt (termed DNAkt), compared with the wild-type variant, whereas it was enhanced in myotubes containing a constitutively active Akt construct (termed MyrAkt). A similar effect was observed on the induction of the ubiquitin-proteasome pathway. Phosphorylation of Akt has been linked to up-regulation of the ubiquitin-proteasome pathway through activation of NF-kappaB (nuclear factor kappaB) in a PI3K-dependent process. Protein degradation was attenuated by rapamycin, a specific inhibitor of mTOR (mammalian target of rapamycin), when added before, or up to 30 min after, addition of PIF. PIF induced transient phosphorylation of mTOR and the 70 kDa ribosomal protein S6 kinase. These results suggest that transient activation of Akt results in an increased protein degradation through activation of NF-kappaB and that this also allows for a specific synthesis of proteasome subunits.  相似文献   

12.
We show that tumor necrosis factor (TNF) and phorbol 12-myristate 13-acetate (PMA) induce TNF-related apoptosis-inducing ligand (TRAIL) in T cells. In cells deficient for NF-kappaB essential modulator (NEMO)/IKKgamma, an essential component of the NF-kappaB-inducing I-kappaB kinase (IKK) complex, induction of TRAIL expression was completely abrogated but was recovered in cells restored for IKKgamma expression. In cells deficient for receptor-interacting protein expression TNF, but not PMA-induced TRAIL expression was blocked. Inhibition of protein synthesis with cycloheximide blocked PMA, but not TNF-induced up-regulation of TRAIL. As both TNF and PMA rapidly induce NF-kappaB activation this suggests that NEMO/IKKgamma-dependent activation of the NF-kappaB pathway is necessary but not sufficient for up-regulation of TRAIL in T cells. The capability of the NF-kappaB pathway to induce the potent death ligand TRAIL may explain the reported proapoptotic features of this typically antiapoptotic pathway.  相似文献   

13.
14.
Hepatic ischemia-reperfusion (I/R) injury continues to be a fatal complication after liver surgery. Heat shock (HS) preconditioning is an effective strategy for protecting the liver from I/R injury, but its exact mechanism is still unclear. Because the activation of nuclear factor-kappaB (NF-kappaB) is an important event in the hepatic I/R-induced inflammatory response, the effect of HS preconditioning on the pathway for NF-kappaB activation was investigated. In the control group, NF-kappaB was activated 60 min after reperfusion, but this activation was suppressed in the HS group. Messenger RNA expressions of proinflammatory mediators during reperfusion were also reduced with HS preconditioning. Concomitant with NF-kappaB activation, NF-kappaB inhibitor I-kappaB proteins were degraded in the control group, but this degradation was suppressed in the HS group. This study shows that HS preconditioning protected the liver from I/R injury by suppressing the activation of NF-kappaB and the subsequent expression of proinflammatory mediators through the stabilization of I-kappaB proteins.  相似文献   

15.
16.
Intercellular adhesion molecule 1 (ICAM-1) has been implicated in playing a key role in the mechanism of inflammatory process initiated in response to environmental agents, and during normal hematopoietic cell differentiation. Though induction of ICAM-1 by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in myeloid cells has been reported, the molecular mechanism by which TPA upregulates ICAM-1 expression remains unclear. In the present study, we investigated the signaling mechanism associated with TPA-induced ICAM-1 expression in ML-1 cells. Herein, our microarray, flow cytometry, and Western blot analysis indicated that ICAM-1 was constitutively expressed at a low level in ML-1 cells, but its expression was further upregulated at both the mRNA and protein levels in response to TPA. ICAM-1 expression in response to TPA was inhibited by pretreatment with GF109203X [a specific inhibitor of protein kinase C (PKC)], or with PD98059 and U0126 (specific inhibitors of MEK), suggesting the importance of PKC, and Erk1/2 signaling cascades in this response. Interestingly, ICAM-1 expression in response to TPA-induced PKC activation was linked to the generation of reactive oxygen species (ROS), as pretreatment with NAC (an ROS scavenger) blocked both ErK1/2 activation and ICAM-1 expression induced by TPA. In addition, TPA-induced ICAM-1 expression was blocked by inhibition of nuclear factor-kappaB (NF-kappaB) activation following pretreatment with BAY11-7085 (a specific inhibitor of NF-kappaB activation). TPA-induced NF-kappaB activation was shown by increased degradation of IkB (NF-kappaB specific inhibitory protein). Together, these observations demonstrated that TPA, a potent activator of PKC, induces ICAM-1 expression via a ROS- and ERK1/2-dependent signaling mechanism in ML-1 cells.  相似文献   

17.
In this study, we examined the signal transduction of dibutyryl cyclic adenosine monophosphate (dBcAMP) to stimulate the release of nitric oxide (NO) and interleukin-6 (IL-6) from J774 macrophages. These actions of dBcAMP were diminished by the presence of the inhibitors of protein kinase A (PKA), protein kinase C (PKC), p38 MAPK and nuclear factor-kappa B (NF-kappaB). In contrast, Go 6976 and PD98059 had no significant effects. Consistently, dBcAMP caused membrane translocation of PKCbetaII, delta, mu, lambda and zeta isoforms, and increased atypical protein kinase C (aPKC) and p38 MAPK activities. The nuclear translocation and DNA-binding study revealed that dBcAMP stimulated NF-kappaB, activator protein-1 (AP-1), and CAAT/enhancer-binding protein (c/EBPbeta). Via PKA, PKC and p38 MAPK-dependent signals, dBcAMP also induced inhibitory subunit of NF-kappaB (IkappaB) degradation, IkappaB kinase (IKK) activation, nuclear translocation of NF-kappaB subunit p65 and its association with the CREB-binding protein (CBP). These results illustrate that PKA activation in macrophages is able to stimulate PKC and p38 MAPK, which lead to IKK-dependent NF-kappaB activation and contribute to the induction of inducible nitric oxide synthase (iNOS) and IL-6 genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号