首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hedgehog and canonical Wnt/beta-catenin signaling are implicated in development of the osteoblast, the bone matrix-secreting cell of the vertebrate skeleton. We have used genetic approaches to dissect the roles of these pathways in specification of the osteoblast lineage. Previous studies indicate that Ihh signaling in the long bones is essential for initial specification of an osteoblast progenitor to a Runx2+ osteoblast precursor. We show here that this is a transient requirement, as removal of Hh responsiveness in later Runx2+, Osx1+ osteoblast precursors does not disrupt the formation of mature osteoblasts. By contrast, the removal of canonical Wnt signaling by conditional removal of the beta-catenin gene in early osteoblast progenitors or in Runx2+, Osx1+ osteoblast precursors results in a similar phenotype: osteoblasts fail to progress to a terminal osteocalcin+ fate and instead convert to a chondrocyte fate. By contrast, stabilization of beta-catenin signaling in Runx2+, Osx1+ osteoblast precursors leads to the premature differentiation of bone matrix secreting osteoblasts. These data demonstrate that commitment within the osteoblast lineage requires sequential, stage-specific, Ihh and canonical Wnt/beta-catenin signaling to promote osteogenic, and block chondrogenic, programs of cell fate specification.  相似文献   

2.
The Hedgehog (Hh) family of signaling molecules normally functions in the development of numerous tissues by regulating cellular differentiation and proliferation. Recent results have demonstrated that the different components of the Hh signaling pathway are expressed in the human thymus. In this study, we investigate the potential role of Sonic hedgehog (Shh) in human intrathymic T cell maturation. Results show that the expression of the two components of the Hh receptor, Patched and Smoothened, is mostly restricted to CD34+ precursor cells that are committing to the T cell lineage. Shh significantly increased the viability of CD34+ T cell precursors modulating bcl-2 and bax protein expression, and also inhibited their proliferation. The treatment of chimeric human-mouse fetal thymus organ cultures with Shh resulted in an arrested thymocyte differentiation and an accumulation of CD34+ progenitor cells. This effect was mainly attributed to the ability of Shh to counteract the IL-7-induced proliferation and differentiation of CD34+ cells. Shh down-regulated in the precursor cell population the expression of IL-7R as well as stromal-derived factor-1 chemokine receptor, CXCR4, and inhibited IL-7-dependent STAT5 phosphorylation. Therefore, Shh may function as a maintenance factor for intrathymic CD34+ precursor cells.  相似文献   

3.
4.
5.
6.
During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling.  相似文献   

7.
8.
9.
Summary WNT1 and WNT3a have been described as having redundant roles in promoting the development of neural crest-derived melanocytes (NC-Ms). We used cell lineage restricted retroviral infections to examine the effects of WNT signaling on defined cell types in neural crest cultures. RCAS retroviral infections were targeted to melanoblasts (NC-M precursor cells) derived from transgenic mice that express the virus receptor, TVA, under the control of a melanoblast promoter (DCT). As expected, over 90% of DCT-TVA+ cells expressed early melanoblast markers MITF and KIT. However, by following the fate of infected cells in standard culture conditions, we find that only 5% of descendents were NC-Ms. The majority of the descendents were not NC-Ms, but expressed smooth muscle cell markers, demonstrating that mammalian melanoblasts are not committed to the NC-M lineage. RCAS infection of DCT-TVA+ cells demonstrated that overexpression of canonical WNT signaling genes (betaCAT, WNT3a or WNT1) can increase NC-M numbers in an endothelin dependent manner. However, WNT1 and WNT3a have different modes of action with respect to melanoblast fate. Intrinsic over-expression of betaCAT or WNT3a can increase NC-M numbers by biasing the fate of DCT-TVA+ cells to NC-Ms. In contrast, the DCT-TVA+ melanoblasts cannot respond to WNT1 signaling and do not alter their fate towards NC-M. Instead, WNT1 only increases NC-M numbers through paracrine signaling on melanoblast precursors to increase the numbers of neural crest cells that become NC-Ms.  相似文献   

10.
Elucidation of the complete roster of signals required for myocardial specification is crucial to the future of cardiac regenerative medicine. Prior studies have implicated the Hedgehog (Hh) signaling pathway in the regulation of multiple aspects of heart development. However, our understanding of the contribution of Hh signaling to the initial specification of myocardial progenitor cells remains incomplete. Here, we show that Hh signaling promotes cardiomyocyte formation in zebrafish. Reduced Hh signaling creates a cardiomyocyte deficit, and increased Hh signaling creates a surplus. Through fate-mapping, we find that Hh signaling is required at early stages to ensure specification of the proper number of myocardial progenitors. Genetic inducible fate mapping in mouse indicates that myocardial progenitors respond directly to Hh signals, and transplantation experiments in zebrafish demonstrate that Hh signaling acts cell autonomously to promote the contribution of cells to the myocardium. Thus, Hh signaling plays an essential early role in defining the optimal number of cardiomyocytes, making it an attractive target for manipulation of multipotent progenitor cells.  相似文献   

11.
Cullin-RING ubiquitin ligases ubiquitinate protein substrates and control their levels through degradation. Here we show that cullin3 (Cul3) suppresses Hedgehog (Hh) signaling through downregulating the level of the signaling pathway effector cubitus interruptus (Ci). High-level Hh signaling promotes Cul3-dependent Ci degradation, leading to the downregulation of Hh signaling. This process is manifested in controlling cell proliferation during Drosophila retinal development. In Cul3 mutants, the population of interommatidial cells is increased, which can be mimicked by overexpression of Ci and suppressed by depleting endogenous Ci. Hh also regulates the population of interommatidial cells in the pupal stage. Alterations in the interommatidial cell population correlate with alterations in precursor proliferation in the second mitotic wave of larval eye discs. Taken together, these results suggest that Cul3 downregulates Ci levels to modulate Hh signaling activity, thus ensuring proper cell proliferation during retinal development.  相似文献   

12.
Drosophila HMGCoA reductase (hmgcr) catalyzes the biosynthesis of a mevalonate precursor for isoprenoids and has been implicated in the production of a signal by the somatic gonadal precursor cells (SGPs) that attracts migrating germ cells. Here, we show that hmgcr functions in the hedgehog (hh) signaling pathway. When hmgcr activity is reduced, high levels of Hh accumulate in hh-expressing cells in each parasegment, while the adjacent "Hh-receiving" cells cannot sustain wg expression and fail to relocalize the Smoothened (Smo) receptor. Conversely, ectopic Hmgcr upregulates Hh signaling when it is produced in hh-expressing cells, but has no effect when produced in the receiving cells. These findings suggest that Hmgcr might orchestrate germ cell migration by promoting the release and/or transport of Hh from the SGPs. Consistent with this model, there are substantial germ cell migration defects in trans combinations between hmgcr and mutations in different components of the hh pathway.  相似文献   

13.
14.
The development of optic stalk neuroepithelial cells depends on Hedgehog (Hh) signaling, yet the source(s) of Hh protein in the optic stalk is unknown. We provide genetic evidence that sonic hedgehog (Shh) from retinal ganglion cells (RGCs) promotes the development of optic disc and stalk neuroepithelial cells. We demonstrate that RGCs express Shh soon after differentiation, and cells at the optic disc in close proximity to the Shh-expressing RGCs upregulate Hh target genes, which suggests they are responding to RGC-derived Shh signaling. Conditional ablation of Shh in RGCs caused a complete loss of optic disc astrocyte precursor cells, resulting in defective axon guidance in the retina, as well as conversion of the neuroepithelial cells in the optic stalk to pigmented cells. We further show that Shh signaling modulates the size of the Pax2(+) astrocyte precursor cell population at the optic disc in vitro. Together, these data provide a novel insight into the source of Hh that promotes neuroepithelial cell development in the mammalian optic disc and stalk.  相似文献   

15.
16.
In vertebrate embryos, the dorsal aorta and the posterior cardinal vein form in the trunk to comprise the original circulatory loop. Previous studies implicate Hedgehog (Hh) signaling in the development of the dorsal aorta. However, the mechanism controlling specification of artery versus vein remains unclear. Here, we investigated the cell-autonomous mechanism of Hh signaling in angioblasts (endothelial progenitor cells) during arterial-venous specification utilizing zebrafish mutations in Smoothened (Smo), a G protein-coupled receptor essential for Hh signaling. smo mutants exhibit an absence of the dorsal aorta accompanied by a reciprocal expansion of the posterior cardinal vein. The increased number of venous cells is equivalent to the loss of arterial cells in embryos with loss of Smo function. Activation of Hh signaling expands the arterial cell population at the expense of venous cell fate. Time-lapse imaging reveals two sequential waves of migrating progenitor cells that contribute to the dorsal aorta and the posterior cardinal vein, respectively. Angioblasts deficient in Hh signaling fail to contribute to the arterial wave; instead, they all migrate medially as a single population to form the venous wave. Cell transplantation analyses demonstrate that Smo plays a cell-autonomous role in specifying angioblasts to become arterial cells, and Hh signaling-depleted angioblasts differentiate into venous cells instead. Collectively, these studies suggest that arterial endothelial cells are specified and formed via repressing venous cell fate at the lateral plate mesoderm by Hh signaling during vasculogenesis.  相似文献   

17.
18.
Hedgehog (Hh) signaling plays a role in heart morphogenesis and can initiate cardiomyogenesis in P19 cells. To determine if Hh signaling is essential for P19 cell cardiomyogenesis, we determined which Hh factors are expressed and the effect of Hh signal transduction inhibitors. Here, we find that the Hh gene family and their downstream mediators are expressed during cardiomyogenesis but an active Hh signaling pathway is not essential. However, loss of Hh signaling resulted in a delay of BMP-4, GATA-4, Gli2, and Meox1 expression during cardiomyogenesis. By using Noggin-overexpressing P19 cells, we determined that Hh signaling was not active during Noggin-mediated inhibition of cardiomyogenesis. Thus, there is cross talk between the Hh and BMP signaling pathways and the Hh pathway appears important for timely cardiomyogenesis.  相似文献   

19.
Proper cell fate determination in mammalian gonads is critical for the establishment of sexual identity. The Hedgehog (Hh) pathway has been implicated in cell fate decision for various organs, including gonads. Desert Hedgehog (Dhh), one of the three mammalian Hh genes, has been implicated with other genes in the establishment of mouse fetal Leydig cells. To investigate whether Hh alone is sufficient to induce fetal Leydig cell differentiation, we ectopically activated the Hh pathway in Steroidogenic factor 1 (SF1)-positive somatic cell precursors of fetal ovaries. Hh activation transformed SF1-positive somatic ovarian cells into functional fetal Leydig cells. These ectopic fetal Leydig cells produced androgens and insulin-like growth factor 3 (INLS3) that cause virilization of female embryos and ovarian descent. However, the female reproductive system remained intact, indicating a typical example of female pseudohermaphroditism. The appearance of fetal Leydig cells was a direct consequence of Hh activation as evident by the absence of other testicular components in the affected ovary. This study provides not only insights into mechanisms of cell lineage specification in gonads, but also a model to understand defects in sexual differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号