首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryos of yellow lupine ( Lupinus luteus L. cv. Jantar), deprived of cotyledons, were incubated for 72 h in media containing various combinations of saccharose, ammonia, nitrate, glutamine and asparagine. Induction of glutamine synthetase (GS) was observed in embryos in media containing saccharose while the activity of this enzyme was inhibited by glutamine, asparagine and ammonia in the absence of sugar. The above mentioned nutritional factors had an opposite effect on the activity of glutamate dehydrogenase (GDH). Changes in glutamate dehydrogenase activity were preceded by reverse changes in the activity of glutamine synthetase. The possibility of GDH repression by GS in lupine embryos is discussed.  相似文献   

2.
Influence of different concentrations of NO3 and NH+ on the activity of glutamine synthetase (GS), asparagine synthetase (AS), glutamate dehydrogenase (GDH), nitrate reductase (NR) and the changes of GS-mRNA in wheat roots have been studied with enzymes activity assay and Northern blot. The results showed that the higher GS activity was found in roots of wheat when NH+4-N was the sole nitrogen source than when NO3-N was the sole nitrogen source. GS-mRNA of Northern blot was simillar to GS activity. 3 mmol/L NO3- promoted the activity of AS. The change of AS was independent of the change of GS. GDH activity was not been detected, and change in regulation of NR activity was not found.  相似文献   

3.
The activities of glutamate dehydrogenase, asparagine synthetase, and total glutamine synthetase in the organs of the white lupine (Lupinus albus L.) plants were measured during plant growth and development. In addition, the dynamics of free amino acids and amides in plant organs was followed. It was shown that the change in the nutrition type was important for controlling enzyme activities in the organs examined and, consequently, for directing the pathway of ammonium nitrogen assimilation. As long as the plants remained heterotrophic, glutamine-dependent asparagine synthetase of cotyledons and glutamine synthetase of leaves apparently played a major role in the assimilation of ammonium nitrogen. In symbiotrophic plants, root nodules became an exclusive site of asparagine synthesis, and the role of leaf glutamine synthetase increased. Unlike glutamine synthetase and asparagine synthetase, glutamate dehydrogenase activity was present in all organs examined and was less dependent on the nutrition type. This was also indicated by a weak correlation of glutamate dehydrogenase activity with the dynamics of free amino acid and amide content in these organs. It is supposed that glutamine synthetase plays a leading role in both the primary assimilation of ammonium, produced during symbiotic fixation of molecular nitrogen in root nodules, and in its secondary assimilation in cotyledons and leaves. On the other hand, secondary nitrogen assimilation in the axial organs occurs via an alternative glutamate dehydrogenase pathway.  相似文献   

4.
5.
利用酶活性测定和 Northern分子杂交等技术 ,研究了小麦幼苗根在不同浓度的 Na NO3 和(NH4) 2 SO4的供应下 ,其谷氨酰胺合成酶 (GS)、天冬酰胺合成酶 (AS)、谷氨酸脱氢酶 (GDH)、硝酸还原酶 (NR)以及 GS- m RNA的变化。结果表明 :NH 4 处理的小麦 ,其根部 GS活性比 NO-3 处理的高 ;高浓度处理的比低浓度处理的高 ;Northern杂交结果说明 GS- m RNA转录量与 GS活性一致 ;3mmol/ L NO-3促进了 AS的活性。AS酶活性变化与 GS酶活性变化无明显依赖关系。在实验的条件下 ,没能测出 GDH的活性 ,不同浓度的 NO-3 和 NH 4 处理对 NR活性没有明显的规律。  相似文献   

6.
Excised maize (Zea mays L.) root tips were used to monitor the effects of prolonged glucose starvation on nitrogen metabolism. Following root-tip excision, sugar content was rapidly exhausted, and protein content declined to 40 and 8% of its initial value after 96 and 192 h, respectively. During starvation the contents of free amino acids changed. Amino acids that belonged to the same synthetic family showed a similar pattern of changes, indicating that their content, during starvation, is controlled mainly at the level of their common biosynthetic steps. Asparagine, which is a good marker of protein and amino-acid degradation under stress conditions, accumulated considerably until 45 h of starvation and accounted for 50% of the nitrogen released by protein degradation at that time. After 45 h of starvation, nitrogen ceased to be stored in asparagine and was excreted from the cell, first as ammonia until 90–100 h and then, when starvation had become irreversible, as amino acids and aminated compounds. The study of asparagine metabolism and nitrogen-assimilation pathways throughout starvation showed that: (i) asparagine synthesis occurred via asparagine synthetase (EC 6.3.1.1) rather than asparagine aminotransferase (EC 2.6.1.14) or the -cyanoalanine pathway, and asparagine degradation occurred via asparaginase (EC 3.5.1.1); and (ii) the enzymic activities related to nitrogen reduction and assimilation and amino-acid synthesis decreased continuously, whereas glutamate dehydrogenase (EC 1.4.1.2–4) activities increased during the reversible period of starvation. Considered together, metabolite analysis and enzymic-activity measurements showed that starvation may be divided into three phases: (i) the acclimation phase (0 to 30–35 h) in which the root tips adapt to transient sugar deprivation and partly store the nitrogen released by protein degradation, (ii) the survival phase (30–35 to 90–100 h) in which the root tips expel the nitrogen released by protein degradation and starvation may be reversed by sugar addition and (iii) the cell-disorganization phase (beyond 100 h) in which all metabolites and enzymic activities decrease and the root tips die.Abbreviations AlaAT alanine aminotransferase - AspAT aspartate aminotransferase - AS asparagine synthetase - Asnase asparaginase - AsnAT asparagine aminotransferase - -CS -cyanoalanine synthase - GDH glutamate dehydrogenase - Glnase glutaminase - GOGAT glutamate synthase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase  相似文献   

7.
8.
In Myrica gale L. plants the assimilation of ammonia released by symbiotic Frankia was observed by 15N2 labelling and subsequent analysis of the isotopic enrichment of nodule amino acids over time by single ion monitoring gas chromatography-mass spectrometry. In detached nodules of Myrica , glutamine was the first amino acid labelled at 30 s and subsequently the amino acids glutamate, aspartate, alanine and γ-amino butyric acid (GABA) became labelled. This pattern of labelling is consistent with the incorporation of ammonium via glutamine synthetase [GS; EC 6.3.1.2]. No evidence for the ammonium assimilation via glutamate dehydrogenase [GDH; EC 1.4.1.2] was observed as glutamate became labelled only after glutamine. Using attached nodules and pulse-chase labelling, we observed synthesis of glutamine, glutamate, aspartate, alanine, GABA and asparagine, and followed the transport of fixed nitrogen in the xylem largely as glutamine and asparagine. Estimation of the cost of nitrogen fixation and asparagine synthesis in Myrica nodules suggests a minimum of one sucrose required per asparagine produced. Rapid translocation of recently fixed nitrogen was observed in Myrica gale nodules as 80% of the nitrogen fixed during a 1-h period was translocated out of the nodules within 9 h. The large pool of asparagine that is present in nodules may buffer the transport of nitrogen and thus act to regulate nitrogen fixation via a feedback mechanism.  相似文献   

9.
Net balances of amino acids were constructed for stages of development of a leaf of white lupin (Lupinus albus L.) using data on the N economy of the leaf, its exchanges of amino acids through xylem and phloem, and net changes in its soluble and protein-bound amino acids. Asparagine, aspartate, and γ-aminobutyrate were delivered to the leaf in excess of amounts consumed in growth and/or phloem export. Glutamine was supplied in excess until full leaf expansion (20 days) but was later synthesized in large amounts in association with mobilization of N from the leaf. Net requirements for glutamate, threonine, serine, proline, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, and arginine were met mainly or entirely by synthesis within the leaf. Amides furnished the bulk of the N for amino acid synthesis, asparagine providing from 24 to 68%. In vitro activity of asparaginase (EC 3.5.1.1) exceeded that of asparagine:pyruvate aminotransferase (EC 2.6.1.14) during early leaf expansion, when in vivo estimates of asparagine metabolism were highest. Thereafter, aminotransferase activity greatly exceeded that of asparaginase. Rates of activity of one or both asparagine-utilizing enzymes exceeded estimated rates of asparagine catabolism throughout leaf development. In vitro activities of glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.7.1) were consistently much higher than that of glutamate dehydrogenase (EC 1.4.1.3), and activities of the former two enzymes more than accounted for estimated rates of ammonia release in photorespiration and deamidation of asparagine.  相似文献   

10.
Summary The relationship between N2-fixation, nitrate reductase and various enzymes of ammonia assimilation was studied in the nodules and leaves ofC. arietinum. In the nodules of the plants growing on atmospheric nitrogen, maximum activities of glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagine synthetase (AS) and aspartate aminotransferase (AAT) were recorded just prior to maximum activity of nitrogenase. In nitrate fed plants, the first major peak of GDH and AS coincided with that of nitrate reductase in the nodules. With the exception of AS, application of nitrate decreased the activities of all these enzymes in nodules but not in leaves. Activities of GS, GOGAT and AAT were affected to much greater extent than that of GDH. On comparing the plants grown without nitrate and those with nitrate, the ratios of the activities of GDH/GS and GDH/GOGAT in nitrate given plants, increased by 4 and 12 fold, respectively. The results presented in this paper suggest that in nodules of nitrate fed plants, assimilation of ammonia via GDH assumes much greater importance.  相似文献   

11.
Aspartic acid (Asp) and asparagine (Asn) are vulnerable amino acids. One-electron addition or withdrawal reactions initiate many deleterious processes involving these amino acids. To study these redox processes we have irradiated by gamma-rays asparagine or aspartic acid in the solid state. The nature of the resulting free radicals was determined by electron paramagnetic resonance (EPR) and by calculations using DFT methods in various environments. Reactions initiated by electron transfer are different for both amino acids: Asn anion loses hydrogen atom whereas the cation undergoes decarboxylation. Conversely, Asp cation loses hydrogen atom from amine group, which triggers decarboxylation.  相似文献   

12.
Addition of ammonium salts to N2 fixing continuous cultures of Clostridium pasteurianum caused immediate stop of nitrogenase synthesis, while the levels of glutamine synthetase, glutamate dehydrogenase and asparagine synthetase remained constant. No evidence for an interconversion of the glutamine synthetase was found. The activities of glutamate synthase in crude extracts were inversely related to the nitrogenase levels. The intracellular glutamine pool rapidly expanded during nitrogenase repression and decreased as fast during derepression while the pool sizes of all other amino acids were not strongly related to the rate of nitrogenase formation. These investigations suggest glutamine as corepressor of nitrogenase synthesis.  相似文献   

13.
In higher plants, glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.2) are the predominant enzymes in nitrogen metabolism. In this study, we cloned both the GS and GDH genes and analyzed their expression levels and variations in their activity in developing and germinating x Triticosecale (cv. Witon) kernels. The developing kernel samples were collected 3, 5, 7, 9, 13, 15, 20, 25, 30, 35, 40 and 45 days after flowering (DAF). The germinating kernel samples were collected after 8, 16, 24, 48 and 72 h of imbibition. There are two GS isoforms that are localized to different compartments: the cytosol (GS1) and the chloroplast (GS2). Five cDNAs encoding GS proteins in triticale plants were obtained using RT-PCR. We cloned the four genes encoding GS1, which we designated TsGS1-1, TsGS1-2, TsGS1-3 and TsGS1-4 and the only gene encoding GS2, which was designated TsGS2-1. We studied the changes in the enzymatic activity and the expression profiles of the GDH, GS1 and GS2 genes in both the developing and germinating seeds of triticale. Based on our results, there is likely cooperation between GDH and GS1 in the synthesis of glutamine and glutamate during the early stages of seed formation and in the scutella of kernels for up to 24 h of imbibition.  相似文献   

14.
The modulation of primary nitrogen metabolism by water deficit through ABA-dependent and ABA-independent pathways was investigated in the model legume Medicago truncatula. Growth and glutamate metabolism were followed in young seedlings growing for short periods in darkness and submitted to a moderate water deficit (simulated by polyethylene glycol; PEG) or treated with ABA. Water deficit induced an ABA accumulation, a reduction of axis length in an ABA-dependent manner, and an inhibition of water uptake/retention in an ABA-independent manner. The PEG-induced accumulation of free amino acids (AA), principally asparagine and proline, was mimicked by exogenous ABA treatment. This suggests that AA accumulation under water deficit may be an ABA-induced osmolyte accumulation contributing to osmotic adjustment. Alternatively, this accumulation could be just a consequence of a decreased nitrogen demand caused by reduced extension, which was triggered by water deficit and exogenous ABA treatment. Several enzyme activities involved in glutamate metabolism and genes encoding cytosolic glutamine synthetase (GS1b; EC 6.3.1.2.), glutamate dehydrogenase (GDH3; EC 1.4.1.1.), and asparagine synthetase (AS; EC 6.3.1.1.) were up-regulated by water deficit but not by ABA, except for a gene encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned). Thus, ABA-dependent and ABA-independent regulatory systems would seem to exist, differentially controlling development, water content, and nitrogen metabolism under water deficit.  相似文献   

15.
16.
Maltman DJ  Gadd SM  Simon WJ  Slabas AR 《Proteomics》2007,7(9):1513-1528
The endoplasmic reticulum is a major compartment of storage protein and lipid biosynthesis. Maximal synthesis of these storage compounds occurs during seed development with breakdown occurring during germination. In this study, we have isolated four independent preparations of ER from both developing and germinating seeds of castor bean (Ricinus communis) and used 2-D DIGE, and a combination of PMF and MS/MS sequencing, to quantify and identify differences in protein complement at both stages. Ninety protein spots in the developing seeds are up-regulated and 19 individual proteins were identified, the majority of these are intermediates of seed storage synthesis and protein folding. The detection of these transitory storage proteins in the ER is discussed in terms of protein trafficking and processing. In germinating seed ER 15 spots are elevated, 5 of which were identified, amongst them was malate synthetase which is a component of the glyoxysome which is believed to originate from the ER. Notably no proteins involved in complex lipid biosynthesis were identified in the urea soluble ER fraction indicating that they are probably all integral membrane proteins.  相似文献   

17.
T. C. Ta  K. W. Joy 《Planta》1986,169(1):117-122
15N-labelled (amino group) asparagine (Asn), glutamate (Glu), alanine (Ala), aspartate (Asp) and serine (Ser) were used to study the metabolic role and the participation of each compound in the photorespiratory N cycle ofPisum sativum L. leaves. Asparagine was utilised as a nitrogen source by either deamidation or transamination, Glu was converted to Gln through NH3 assimilation and was a major amino donor for transamination, and Ala was utilised by transamination to a range of amino acids. Transamination also provided a pathway for Asp utilisation, although Asp was also used as a substrate for Asn synthesis. In the photorespiratory synthesis of glycine (Gly), Ser, Ala, Glu and Asn acted as sources of amino-N, contributing, in the order given, 38, 28, 23, and 7% of the N for glycine synthesis; Asp provided less than 4% of the amino-N in glycine. Calculations based on the incorporation of15N into Gly indicated that about 60% (Ser), 20% (Ala), 12% (Glu) and 11% (Asn) of the N metabolised from each amino acid was utilised in the photorespiratory nitrogen cycle.Abbreviations Ala alamine - Asn asparagine - Asp aspartate - Glu glutamate - MOA methoxylamine - Ser serine  相似文献   

18.
The enzymes of the assimilation pathways in cultures of S. hygroscopicus grown in the presence of various nitrogen sources were investigated. No assimilation activity of glutamate dehydrogenase (GDH) was observed. Activities of alanine dehydrogenase (ADH), GDH, glutamine: 2-oxoglutarate aminotransferase (GOGAT) and glutamate synthetase (GS) were studied. High concentrations of ammonium and alanine induced ADH formation. The levels of GS remained low in media with NH4Cl. Various nitrogen sources had no impact on the activity of GOGAT which suggested the involvement of constitutive synthesis. ADH was likely to play an alternative role. Determination of the quantitative and qualitative composition of the free amino acids confirmed the involvement of the GS-GOGAT pathway in nitrogen assimilation. The concentration of ammonium ions in the media with one amino acid or in the presence of several amino acids lowered the antibiotic activity while in the media with alanine and the other nitrogen compounds it increased the antibiotic activity.  相似文献   

19.
Storage lipid and protein breakdown in germinating seeds of yellow (Lupinus luteus L.), white (L. albus L.), and Andean lupine (L. mutabilis Sweet) and regulatory function of sucrose were investigated. Less oil bodies were detected in organs of yellow lupine seeds, whereas the highest content of oil bodies was noticed in the Andean lupine seeds. Mature, air-dried yellow, white and Andean lupine seeds do not contain starch. Starch grains appear the earliest in white lupine seeds during imbibition. Sucrose deficiency in tissues enhances breakdown of storage lipid, protein and temporary starch in cotyledons. In sucrose starved embryo axes of all investigated lupine species, an increased level of vacuolization was noted. Interconnections between catabolism of storage protein and storage lipid in germinating lupine seeds were identified by applying 14C-acetate. To assess the importance of key processes in storage lipid breakdown NaF (inhibitor of glycolysis and gluconeogenesis), KCN, NaN3 and SHAM (inhibitors of mitochondrial electron transport chain) and MSO (inhibitor of glutamine synthetase) were used. Radioactivity coming from 14C-acetate was released as 14CO2 but mostly was incorporated into ethanol-soluble fraction of embryo axes and cotyledons. Respiratory inhibitors caused a significant decrease in 14CO2 and ethanol fractions in all three lupine species studied. MSO stimulated release of 14CO2 and radioactivity of ethanol fractions in yellow lupine organs fed with sucrose, but in Andean lupine MSO enhanced the production of 14CO2 and radioactivity of ethanol fractions both in organs fed and not fed with sucrose. Different strategies of storage compound breakdown are proposed, depending on relative proportion in storage protein and lipid content in lupine seeds.  相似文献   

20.
Escherichia coli asparagine synthetase B (AS-B) catalyzes the formation of asparagine from aspartate in an ATP-dependent reaction for which glutamine is the in vivo nitrogen source. In an effort to reconcile several different kinetic models that have been proposed for glutamine-dependent asparagine synthetases, we have used numerical methods to investigate the kinetic mechanism of AS-B. Our simulations demonstrate that literature proposals cannot reproduce the glutamine dependence of the glutamate/asparagine stoichiometry observed for AS-B, and we have therefore developed a new kinetic model that describes the behavior of AS-B more completely. The key difference between this new model and the literature proposals is the inclusion of an E.ATP.Asp.Gln quaternary complex that can either proceed to form asparagine or release ammonia through nonproductive glutamine hydrolysis. The implication of this model is that the two active sites in AS-B become coordinated only after formation of a beta-aspartyl-AMP intermediate in the synthetase site of the enzyme. The coupling of glutaminase and synthetase activities in AS is therefore different from that observed in all other well-characterized glutamine-dependent amidotransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号