首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential Giemsa staining techniques have been used to stain kinetochores in meiotic chromosomes of two higher plants. Using these techniques it has been possible to follow changes in kinetochore behavior and appearance through meiosis.  相似文献   

2.
The S. pombe Cdc14-related phosphatase Clp1p/Flp1p regulates G2/M transition by antagonizing CDK activity and is essential for coordinating the nuclear division cycle with cytokinesis through the cytokinesis checkpoint. At the G2/M transition, Clp1p/Flp1p is released from the nucleolus and SPB and distributes throughout the nucleus to the spindle and the contractile ring. This early relocalization is analogous to vertebrate Cdc14 homologs and stands in contrast to S. cerevisiae Cdc14p, which is not released from the nucleolus until metaphase/anaphase transition. Here, we report that Clp1p/Flp1p localizes to kinetochores in prometaphase and functions in chromosome segregation, since deletion of clp1/flp1 causes cosegregation of sister chromatids, when sister kinetochores are prone to mono-orientation. Genetic, cytological, and biochemical experiments suggest that Clp1p/Flp1p functions together with Aurora kinase at kinetochores. Together, these results suggest that Clp1p/Flp1p has a role in repairing mono-orientation of sister kinetochores.  相似文献   

3.
Halving of the chromosome number during meiosis I depends on the segregation of maternal and paternal centromeres. This process relies on the attachment of sister centromeres to microtubules emanating from the same spindle pole. We describe here the identification of a protein complex, Csm1/Lrs4, that is essential for monoorientation of sister kinetochores in Saccharomyces cerevisiae. Both proteins are present in vegetative cells, where they reside in the nucleolus. Only shortly before meiosis I do they leave the nucleolus and form a "monopolin" complex with the meiosis-specific Mam1 protein, which binds to kinetochores. Surprisingly, Csm1's homolog in Schizosaccharomyces pombe, Pcs1, is essential for accurate chromosome segregation during mitosis and meiosis II. Csm1 and Pcs1 might clamp together microtubule binding sites on the same (Pcs1) or sister (Csm1) kinetochores.  相似文献   

4.
SYNOPSIS. The ultrastructure of interphase and mitotic nuclei of the epimastigote form of Trypanosoma cyclops Weinman is described. In the interphase nucleus the nucleolus is located centrally while at the periphery of the nucleus condensed chromatin is in contact with the nuclear envelope. The nucleolus fragments at the onset of mitosis, but granular material of presumptive nucleolar origin is often recognizable in the mitotic nucleus. Peripheral chromatin is in contact with the nuclear envelope throughout mitosis, and it seems reasonable to assume that the nuclear envelope is involved in its segregation to the daughter nuclei. Spindle microtubules extend between the poles of the dividing nucleus and terminate close to the nuclear envelope. The basal body and kinetoplast divide before the onset of mitosis and do not appear to have any morphologic involvement in that process. Spindle pole bodies, kinetochores, and chromosomal microtubules have not been observed.  相似文献   

5.
Type 1 phosphatase (PP1) antagonizes Aurora B kinase to stabilize kinetochore-microtubule attachments and to silence the spindle checkpoint. We screened for factors that exacerbate the growth defect of Δdis2 cells, which lack one of two catalytic subunits of PP1 in fission yeast, and identified Nsk1, a novel protein required for accurate chromosome segregation. During interphase, Nsk1 resides in the nucleolus but spreads throughout the nucleoplasm as cells enter mitosis. Following dephosphorylation by Clp1 (Cdc14-like) phosphatase and at least one other phosphatase, Nsk1 localizes to the interface between kinetochores and the inner face of the spindle pole body during anaphase. In the absence of Nsk1, some kinetochores become detached from spindle poles during anaphase B. If this occurs late in anaphase B, then the sister chromatids of unclustered kinetochores segregate to the correct daughter cell. These unclustered kinetochores are efficiently captured, retrieved, bioriented, and segregated during the following mitosis, as long as Dis2 is present. However, if kinetochores are detached from a spindle pole early in anaphase B, then these sister chromatids become missegregated. These data suggest Nsk1 ensures accurate chromosome segregation by promoting the tethering of kinetochores to spindle poles during anaphase B.  相似文献   

6.
T. Haaf  M. Schmid 《Human genetics》1989,81(2):137-143
Summary Centromere arrangement in interphase and metaphase cells of two human tumour cell lines was analysed using anti-kinetochore antibodies as immunofluorescent probes. In GLC1 interphase nuclei, kinetochores were non-randomly positioned around the nucleolus and close to the nuclear membrane. During S and early G2 phase, necklace-like strands of kinetochores were formed in the centre of the nucleus. The duplication of sister kinetochores during the G2 phase was not synchronized. At late G2 phase, a relatively random topological distribution of centromeres was observed with short linear arrays of sister kinetochores. Carefully spread metaphase plates of MDA-MB231 cells generally exhibited a linear alignment of centromeres and large centromeric clusters. In completely pulverized MDA-MB231 cells, centromeres showed a strong tendency to associate with each other.  相似文献   

7.
A stable cell line (GT2-LPk) derived from LLC-Pk was created in which endogenous DNA topoisomerase II alpha (topoII alpha) protein was downregulated and replaced by the expression of topoII alpha fused with enhanced green fluorescent protein (EGFP-topoII alpha). The EGFP-topoII alpha faithfully mimicked the distribution of the endogenous protein in both interphase and mitosis. In early stages of mitosis, EGFP-topoII alpha accumulated at kinetochores and in axial lines extending along the chromosome arms. During anaphase, EGFP-topoII alpha diminished at kinetochores and increased in the cytoplasm with a portion accumulating into large circular foci that were mobile and appeared to fuse with the reforming nuclei. These cytoplasmic foci appearing at anaphase were coincident with precursor organelles of the reforming nucleolus called nucleolus-derived foci (NDF). Photobleaching of EGFP-topoII alpha associated with kinetochores and chromosome arms showed that the majority of the protein rapidly exchanges (t1/2 of 16 s). Catalytic activity of topoII alpha was essential for rapid dynamics, as ICRF-187, an inhibitor of topoII alpha, blocked recovery after photobleaching. Although some topoII alpha may be stably associated with chromosomes, these studies indicate that the majority undergoes rapid dynamic exchange. Rapid mobility of topoII alpha in chromosomes may be essential to resolve strain imparted during chromosome condensation and segregation.  相似文献   

8.
All eukaryotes rely on multi-protein assemblies, called kinetochores, to direct the segregation of their chromosomes in mitosis. The list of known kinetochore components has been growing rapidly in the post-genomic era: in animal cells, there are presently more than 80 proteins that show either exclusive or partial localization at kinetochores during mitosis. The future challenge is to elucidate how these proteins contribute to kinetochore structure, spindle microtubule attachment, regulation of microtubule dynamics, and the detection, signaling, and correction of microtubule attachment errors. Cultured human tumor cells, especially HeLa cells, are widely used for the study of kinetochores. Recently, the experimental advantages offered by the nematode Caenorhabditis elegans have been exploited for functional analysis of kinetochore components in the first embryonic division. Here, we discuss basic methods, largely based on fluorescence imaging, to study kinetochore structure and function in these two metazoan model systems.  相似文献   

9.
A technique is described for selectively silver staining nucleoli, active nucleolus organizers, nucleolar material attached to chromosomes, kinetochores, synaptonemal complexes, and chromosome cores in plant cells. The technique, called salt-nylon silver staining, involves spreading cells on glass slides, treating the cells with a solution of saline sodium citrate, and incubating the cells in a silver nitrate solution covered with nylon screen. Selected variables important for achieving reliable silver staining are considered.  相似文献   

10.
Cytochemical distinction of various nucleolar components in insect cells.   总被引:1,自引:0,他引:1  
The fine structure of the insect Sf9 cell nucleolus has been investigated by means of different cytochemical and immunocytochemical techniques at the electron microscope level. Apart from a few perinucleolar condensed chromatin clumps, the insect cell nucleolus comprises two compartments. The first of these consists of a roundish compact zone formed of fibrillar material. The other is composed of fibrillar and granular structures organized into a network separated by interstitial spaces. But, unlike mammalian cell nucleoli, any fibrillar center has been observed in the Sf9 cell nucleolus, even after actinomycin D treatment. We also show that the compact fibrillar zone of Sf9 cell nucleoli contains silver-stainable material and DNA. In actinomycin D-treated cells, a preferential contact of this compact fibrillar zone with condensed chromatin has been visualized. Finally, silver-stainable material has been found to persist throughout the whole mitosis. These results suggest that the compact fibrillar zone at the insect Sf9 cell nucleolus should, at least partly, correspond to the fibrillar center of mammalian cell nucleoli.  相似文献   

11.
12.
The ultrastructure of mitotic nuclei of Blastocrithidia triatomae   总被引:2,自引:0,他引:2  
The fine structure of mitotic nuclei of the flagellate Blastocrithidia triatomae has been studied by serial thin sections and three-dimensional reconstructions. The sequence of changes during the four stages of mitosis are described. A set of three dense plaques is constantly found in the equatorial stage of mitosis. The microtubular spindle is organized around these plaques. The plaques split into halves at the end of the equatorial stage, and the half-plaques migrate to the spindle ends. Elongation of the mitotic nucleus occurs after the division of the plaques. This elongation is associated with the formation of an interpolar bundle of microtubules. The equatorial spindle is formed by 26-28 microtubules and is 1.5 micrometers long. The nucleolus attaches itself to the nuclear envelope and persists up to the elongational stage; then it disintegrates and is reorganized in daughter nuclei. Mitotic events in B. triatomae are essentially similar to those in Trypanosoma cruzi epimastigotes. As in this hemoflagellate, the dense plaques behave as kinetochores. It is concluded that B. triatomae is probably a haploid organism that contains three chromosomes.  相似文献   

13.
Summary We used an ultraviolet microbeam to irradiate kinetochores, or to irradiate kinetochore fibres just in front of kinetochores, in anaphase crane-fly spermatocytes. Forward movements were blocked after most irradiations, but in 7 cells the associated anaphase half-bivalents moved backward, toward their partner half-bivalents, with speeds faster than poleward movements. The occurrence of backward movement suggests that there may be mechanical connections between separating half-bivalents. We have been unable to find conditions to obtain these results reproducibly.  相似文献   

14.
Summary Different staining procedures, various digestion methods and autoradiographic techniques were employed to study the structure and composition of the nucleolus and of the nucleolonema, after unmasking the latter by adenosine treatment. The presence of DNA, RNA, protein and lipid in these structures has been shown. It has been demonstrated that the filamentous structure within the nucleolus — the nucleolonema— has a core of DNA, around which RNA and protein have accumulated. The structure of the nucleolonema suggests that it is in a highly active state, in synthesizing ribosomal RNA and protein.We take the opportunity to express our gratefulness to the Director, Prof. Dr. Hans Lettré, for providing facilities to work in this Institute. We like to thank our other colleagues, particularly Dr. N. Paweletz, for their valuable help during the course of the investigations.  相似文献   

15.
Ever since the nucleolus was noted by Fontana (1781), a vast array of literature has accumulated on staining procedures for its study. However, most are for animal cells and there are few for plant cells. These techniques are reviewed by Busch and Smetana (1970). A method suggested by Das (1962) and later modified by Das and Alfert (1963) uses silver nitrate followed by photographic developers. Silver nitrate staining after hydroquinone-formalin fixation has been suggested for routine use (Gomez et al. 1969, Stockert et al. 1969). However, by these light microscopic techniques the entire nucleolus is darkly stained and intranucleolar structure is observed.  相似文献   

16.
Observed differences in the sizes of lampbrush nucleolus organizers in Plethodon cinereus have been shown by in situ hybridization to reflect true molecular differences in the numbers of ribosomal cistrons located at these organizers. Likewise, from in situ hybridization experiments on lampbrush and spermatocyte chromosomes it has been shown that animals may be, and indeed usually are, heterozygous with respect to the numbers of ribosomal cistrons on each half of the nucleolus bivalent. Filter hybridizations carried out on 33 males from a New Jersey population and 20 males from a Connecticut population have shown a 7.5-fold range in the numbers of ribosomal cistrons per diploid cell in the New Jersey population, and a 2.5-fold range in the Connecticut population. In view of the general heterozygosity of nucleolus organizers in these animals, the actual range in nucleolus organizer sizes in the New Jersey population is estimated to be at least 15-fold.  相似文献   

17.
CREST sera have been used to identify kinetochores in mature mammalian sperm heads. It is necessary to decondense the sperm heads artificially to permit access of the reagents before the kinetochores can be demonstrated immunocytochemically. The distribution of kinetochores in the sperm heads appears to be random. These results show that the kinetochore antigen recognized by the CREST sera used here is retained during spermiogenesis and is passed on to the zygote at fertilization.  相似文献   

18.
The genetic control of nucleolus formation in wheat   总被引:3,自引:0,他引:3  
The wheat variety Chinese Spring has four pairs of nucleolus organisers of known rDNA content. The genetic control of these has been investigated in root tip cells by cytologically scoring the number of nucleoli per cell in (a) aneuploid derivatives each having a different dosage of a particular chromosome or chromosome arm and (b) in substitution lines where nucleolus organiser chromosomes have been replaced by homologues possessing different amounts of rDNA. It has been assumed that nucleolus organiser activity is correlated with nucleolus size and thus with the presence of a cytologically visible nucleolus. Those nucleolus organisers on chromosomes 1A and 5D, which together possess only 10% of the rDNA form a visible nucleolus only infrequently in the presence of the larger nucleolus organisers on chromosomes 1B and 6B. When a major pair of organisers on chromosomes 1B or 6B is deleted, the smaller nucleolus organisers form a visible nucleolus more frequently. Similarly, when the major nucleolus organisers are replaced by organisers with less rDNA, the smaller nucleolus organisers form visible nucleoli more frequently. When a small nucleolus organiser is replaced by one with much more rDNA, a larger nucleolus is formed. These and other findings lead to the general conclusions that there is a frequently, but not invariably, seen correlation between rRNA gene number and nucleolus size. However the relative size of the nucleolus formed depends principally upon the proportion of the total active rRNA genes in the cell which are localised at the nucleolus organiser in question. Varying the dosage of at least 13 non nucleolus organiser chromosomes also resulted in changes in the number of visible nucleoli per cell. This implies the genetic control of individual nucleolus organisers is complex. Inclusion in the wheat genome of the nucleolus organiser chromosome from Aegilops umbellulata, causes suppression of the wheat nucleolus organisers, the Aegilops umbellulata organiser remaining active. This suppression is similar to that observed in many interspecific plant and animal hybrids.  相似文献   

19.
Microtubule-interfering agents have been very useful both as biological tools in studying mitosis and as chemotherapeutic agents against cancer. It remains poorly understood how these agents converge on the spindle assembly checkpoint (SAC) to halt mitotic progression, while inhibiting microtubule dynamics by different mechanisms. Cells arrested at mitosis by various microtubule-interfering agents exhibit strikingly different defects in the mitotic spindle. However, all the arrested cells possess the 3F3/2 phosphoepitope at the sister kinetochores of chromosomes, indicating the decrease of tension across the paired kinetochores. In addition, microtubule-interfering agents result in a comparable reduction in the distance between sister kinetochores, suggesting that these agents decrease interkinetochore tension to similar degrees. Here, we discuss recent progress that suggests impairment of kinetochore-microtubule attachment and reduction of interkinetochore tension as common mechanisms underlying the persistent SAC activation in response to diverse microtubule-interfering agents.  相似文献   

20.
The life of the nucleolus has proven to be more colorful and multifaceted than had been envisioned a decade ago. A large number of proteins found in this subnuclear compartment have no identifiable tie either to the ribosome biosynthetic pathway or to the other newly established activities occurring within the nucleolus. The questions of how and why these proteins end up in this subnuclear compartment remain unanswered and are the focus of intense current interest. This review discusses our thoughts on the discovery of nonribosomal proteins in the nucleolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号