首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sensitive RT-nPCR assays can be used for the rapid detection of viruses. The objective of this research was to validate an RT-nPCR assay for detection of BVDV associated with various samples collected from an IVF system. In 12 research replicates, we maintained matured COCs as negative controls or exposed them to 1 of 4 noncytopathic strains (SD-1, NY-1, CD-87, or PA-131) of BVDV for 1 h immediately before IVF. After 4 d of IVC, we harvested groups of 5 nonfertile ova or degenerated embryos (NFD) and some associated cumulus cells and transferred developing embryos and the remaining cumulus cells into secondary IVC drops. On the seventh d of IVC, cumulus cells, groups of 5 washed NFD and groups of 5 developed, washed embryos were harvested. We also collected single developed embryos after washing, washing with trypsin, washing and cryopreservation in ethylene glycol, or washing with trypsin and cryopreservation in ethylene glycol. All washes were performed according to International Embryo Transfer Society standards. Developed embryos and NFD were sonicated prior to assay. All samples were assayed for BVDV using virus isolation and RT-nPCR. The virus isolation and RT-nPCR assays determined that all negative control samples were BVDV-free. Virus was detected in association with all exposed cumulus cells and groups of developed embryos using both virus isolation and RT-nPCR. Results from viral assays of other exposed samples indicate enhanced sensitivity of the RT-nPCR assay. The RT-nPCR assay used in this research exhibited acceptable sensitivity, specificity, predictive value and repeatability for rapid detection of BVDV associated with the various samples obtained from an IVF system.  相似文献   

2.
In vitro embryo production has been used extensively in research and is now offered as a commercial service, yet the hazards of introducing specific infectious agents into in vitro embryo production systems have not been completely defined. The introduction of noncytopathic bovine viral diarrhea virus (BVDV) is a special concern. One objective of this study was to determine if noncytopathic BVDV-infected uterine tubal cells in IVF and IVC systems affected the rate of cleavage and development. An additional objective was to determine if either degenerated ova or embryos produced in the presence of the infected cells had virus associated with them after washing. Follicular oocytes (n = 645) collected from slaughterhouse ovaries were matured and fertilized in vitro, and presumptive zygotes were cultured for 7 d. Primary cultures of uterine tubal cells for use during IVF and IVC were divided into 2 groups. One-half of the cultures was infected with noncytopathic BVDV while the other half was not exposed to the virus. Approximately equal groups of mature oocytes were inseminated, and the presumptive zygotes were cultured with infected or noninfected uterine tubal cells. After 7 d in IVC, zona pellucida-intact (ZP-I) morulae and blastocysts and degenerated ova were washed and assayed for the presence of infectious virus. Infections of uterine tubal cells were not apparent and did not reduce rates of cleavage and development (P > 0.05; Chi-square test for heterogeneity). After washing, BVDV was isolated at a significantly higher rate from groups of virus-exposed degenerated ova (79%) than from individual virus-exposed morulae and blastocysts (37%; P = 0.0002; Mantel-Haenszel summary, Chi-square).  相似文献   

3.
Gametes, somatic cells and materials of animal origin in media are potential sources for introducing bovine viral diarrhea virus (BVDV) into systems for production of IVF bovine embryos. Further, the efficacy of washing and trypsin treatment for removal of BVDV from IVF embryos is questionable. Washing and trypsin treatments recommended by the International Embryo Transfer Society for in vivo-derived embryos were applied to in vitro-derived, virus-exposed, bovine embryos in this side-by-side comparison of treatments. Embryos for the study were produced in a virus-free system in which follicular oocytes were matured and fertilized in vitro and presumptive zygotes were co-cultured with bovine uterine tubal cells for 7 d. A total of 18 trials was performed, 9 using a noncytopathic BVDV and 9 using a cytopathic BVDV. In each trial, 4 equal groups of 10 or less, zona pellucida-intact embryos/ova were assembled, including 2 groups of morulae and blastocysts (M/B) and 2 groups of nonfertile or degenerated ova (NFD). Each group was prewashed and exposed to 10(4) to 10(6) TCID50/mL of either noncytopathic (SD-1) or cytopathic (NADL) BVDV for 2 h. Following in vitro viral exposure, one group of M/B and one group of NFD were washed. The other groups of M/B and NFD were trypsin-treated. Both treatments were consistent with IETS guidelines. After in vitro exposure to noncytopathic BVDV and washing, viral assays of 100% (9/9) and 78% (7/9) of the groups of M/B and NFD ova, respectively, were positive. After in vitro exposure to cytopathic BVDV and washing, viral assay of 33% (3/9) of the groups of both M/B and NFD ova were positive. After in vitro exposure to noncytopathic BVDV and trypsin treatment, viral assay of 44% (4/9) of groups of M/B and 67% (6/9) of groups of NFD ova were positive. Finally, after in vitro exposure to cytopathic BVDV and trypsin treatment, viral assay of 22% (2/9) of the groups of M/B and 44% (4/9) of the groups of NFD ova were positive. Contingency table analysis, in which data was stratified by embryo type and virus biotype, was used to compare results. While a difference existed between results of the 2 treatments of groups of M/B within the noncytopathic biotype (P = 0.01, Mantel Haenszel Chi-square), no difference was observed between comparison of treatment between all groups in both biotypes (P > 0.05).  相似文献   

4.
Early research indicated that bovine viral diarrhea virus (BVDV) would not adhere to zona pellucida-intact (ZP-I), in vivo-derived bovine embryos. However, in a recent study, viral association of BVDV and in vivo-derived embryos was demonstrated. These findings raised questions regarding the infectivity of the embryo-associated virus. The objectives of this study were to evaluate the infectivity of BVDV associated with in vivo-derived bovine embryos through utilization of primary cultures of uterine tubal cells (UTC) as an in vitro model of the uterine environment and to determine if washing procedures, including trypsin treatment, were adequate to remove virus from in vivo-derived embryos. One hundred and nine ZP-I morulae and blastocysts (MB) and 77 non-fertile and degenerated (NFD) ova were collected on day 7 from 34, BVDV-negative, superovulated cows. After collection, all MB and NFD ova were washed according to International Embryo Transfer Society (IETS) standards and exposed for 2h to approximately 10(6) cell culture infective doses (50% endpoint) per milliliter of viral strain SD-1. Following exposure, some groups of <10 MB or NFD ova were washed in accordance with IETS standards. In addition, an equivalent number of MB and NFD ova were subjected to IETS standards for trypsin treatment. Subsequently, NFD ova were immediately sonicated and sonicate fluids were assayed for presence of virus, while individual and groups of MB were placed in microdrops containing primary cultures of UTCs and incubated. After 3 days, embryos, media, and UTCs were harvested from each microdrop and assayed for BVDV. Virus was detected in the sonicate fluids of 56 and 43% of the groups of NFD ova that were washed and trypsin-treated, respectively. After 3 days of microdrop culture, virus was not detected in media or sonicate fluids from any individual or groups of MB, regardless of treatment. However, virus was detected in a proportion of UTC that were co-cultured with washed groups of MB (30%), washed individual MB (9%) and trypsin treated individual MB (9%), but no virus was detected in the UTC associated with groups of trypsin-treated embryos. In conclusion, virus associated with developing embryos was infective for permissive cells. Further, the quantity of virus associated with a proportion of individual embryos (both washed and trypsin treated) was sufficient to infect the UTC. In light of these results, an attempt should be made to determine if the quantity of a high-affinity isolate of BVDV associated with an individual embryo would infect recipients via the intrauterine route.  相似文献   

5.
Techniques for in vitro production of bovine embryos have evolved to the extent that applications for the commercial production of calves have been proposed. However, little is known about the epidemiological implications of the procedures. One concern is the introduction of noncytopathic bovine viral diarrhea virus (BVDV). In this study, follicular oocytes (n=247) collected from 10 cows were matured and fertilized in vitro and presumptive zygotes were cultured for 7 d. Primary cultures of bovine oviductal epithelial cells for use during in vitro fertilization and culture were divided into 2 groups. Treated oviductal cells were infected with BVDV while control cells were not exposed to the virus. Two approximately equal groups of mature oocytes from each cow were inseminated, and the presumptive zygotes were cultured with infected or noninfected oviductal cells. After 7 d in culture, zona pellucida-intact morulae/blastocysts and degenerated ova were washed, sonicated and assayed for the presence of virus. The rates of cleavage and development were also compared by Chi-square analysis. After washing, virus was not isolated from morulae and blastocysts but was isolated from some groups of degenerated ova. Infections of oviductal cells were inapparent and did not significantly (P>0.05) affect rates of cleavage or development.  相似文献   

6.
7.
In previous studies, bovine viral diarrhea virus (BVDV) remained associated with IVF embryos after viral exposure and washing. However, uterine tubal cells (UTC) were not infected when exposed embryos were washed and individually co-cultured with them. The objective of this study was to evaluate quantity and infectivity of embryo-associated virus and antiviral influence of a blastocyst as possible explanations for failure to infect the UTC in vitro. Morulae and blastocysts were produced in vitro and washed. A portion of the embryos were incubated for 2 h in medium containing 10(6) to 10(8) cell culture infective doses (50%, CCID50) of a genotype I, noncytopathic BVDV per milliliter and then washed again. Virus isolation was attempted on sonicated negative (virus unexposed) and positive (virus exposed) control embryo groups after washing. The influence of quantity and infectivity of embryo-associated virus was evaluated by transferring exposed, washed embryo groups (2, 5, and 10 embryos/group) or sonicate fluid of exposed, washed, sonicated embryo groups (2, 5, and 10 embryos/group) to cultures containing bovine UTC in IVC medium that was free of BVDV neutralizing activity. The antiviral influence of an embryo was evaluated by adding 1 to 10(5) CCID50 of BVDV to UTC in the presence or absence of a single unexposed blastocyst in IVC medium. After 2 d in co-culture, the UTC, IVC medium and washed embryos (when present) were tested separately for the presence of BVDV using virus isolation. Virus was isolated from sonicate fluids of all positive but no negative controls. Virus was not isolated from any UTC following 2 d of culture with virally exposed groups of intact embryos. However, virus was isolated from UTC cultured with sonicate fluids from some groups of 5 (60%) and 10 (40%) embryos. Infective virus also remained associated with some groups of 2 (20%), 5 (40%) and 10 (60%) intact embryos after 48 h of post-exposure culture. Finally, primary cultures of UTC were more susceptible to infection with BVDV in the absence of a blastocyst (P = 0.01). Results indicate that insufficient quantity and reduced infectivity of embryo-associated virus as well as an antiviral influence of intact IVF blastocysts may all contribute to failure of embryo-associated virus to infect UTC in vitro.  相似文献   

8.
The present study was conducted to examine the effect of oxygen tension during in vitro culture (IVC) of porcine oocytes/embryos on their development and quality using two different culture systems. Porcine cumulus oocyte complexes (COCs) were matured (IVM) and fertilized (IVF) in vitro, and subsequently cultured for 6 days in a simple and economical portable incubator or a standard CO(2) incubator. While the same temperature (38.5 degrees C) and CO(2) concentration (5%) were used in the both systems, the portable incubator was operated in a negative air pressure (- 300 mmHg) to create an O(2) level at 8-10% (low O(2) concentration), or in a positive air pressure (high O(2) concentration). To compare the two culture systems, IVM and IVF of COCs and subsequent IVC of in vitro produced (IVP) embryos were carried out in the portable incubator with a low O(2) concentration (Group I) or in the standard incubator with a high O(2) concentration (Group II). To assess the effect of O(2) concentration on IVC of IVP embryos, some oocytes that had been cultured in the standard incubator for IVM and IVF were subsequently cultured in the portable incubator with a low O(2) concentration (Group III) or a high O(2) concentration (Group IV). The occurrence of DNA fragmentation in the blastocysts produced under different culture conditions was examined by TUNEL staining to assess embryo quality. The rates of oocytes that reached MII and were penetrated by spermatozoa following IVF did not differ between the two incubation systems. In contrast, the proportions of development to blastocysts and the mean cell number of blastocysts in Group I were higher than those in Group II and Group IV. The index of DNA-fragmented nucleus in the blastocysts of Group I was significantly lower than that in the blastocysts of Group II. Therefore, low oxygen tension during IVM, IVF and IVC enhanced the subsequent development of IVP embryos to the blastocyst stage and improved their quality.  相似文献   

9.
10.
11.
The effects of various concentrations of ammonia in the media during in vitro fertilization (IVF), culture (IVC), and throughout maturation (IVM), IVF, and IVC were evaluated using a randomized complete block design. Ammonia was added to the media at various concentrations during IVF (experiment 1), during IVC (experiment 2), and throughout IVM, IVF, and IVC (experiment 3). In the first experiment, there was a significant (P<0.05) increase in embryos developed to blastocyst, and to expanding and hatching blastocyst, in IVF media containing moderate concentrations of ammonia compared with that in the IVF control media. In the second experiment, ammonia in the IVC media increased (P<0.05) the proportion of degenerate ova and decreased (P<0.05) the proportion of ova that developed to blastocysts. In experiment 3, cleavage rates tended (P=0.06) to be greater for control groups than for treatment groups. The proportion of ova developing to morula was greater (P<0.05) in media containing moderate concentrations of ammonia than that in the control groups. These results indicate that the effect of ammonia on development of preimplantation bovine embryos depends on the concentration of ammonia and the stage of development when exposure to ammonia occurs.  相似文献   

12.
Two recent studies demonstrated that a high-affinity isolate of BVDV (SD-1), remained associated with a small percentage of in vivo-derived bovine embryos following artificial exposure to the virus and either washing or trypsin treatment. Further, the embryo-associated virus was infective in an in vitro environment. Therefore, the objective of this study was to determine if the quantity of a high-affinity isolate of BVDV associated with single-washed or trypsin-treated embryos could cause infection in vivo. Twenty zona-pellucida-intact morulae and blastocysts (MB) were collected on day 7 from superovulated cows. After collection, all MB were washed according to International Embryo Transfer Society (IETS) standards, and all but 4 MB (negative controls) were exposed for 2 h to 10(5)-10(6) cell culture infective doses (50% endpoint) per milliliter (CCID(50)/mL) of viral strain SD-1. Following exposure, according to IETS standards, one half of the MB were washed and one half were trypsin treated. All MB were then individually sonicated, and sonicate fluids were injected intravenously into calves on day 0. Blood was drawn to monitor for viremia and(or) seroconversion. Seroconversion of calves injected with sonicate fluids from washed and trypsin-treated embryos occurred 38% and 13% of the time, respectively. Therefore, the quantity of a high-affinity isolate of BVDV associated with single-washed or trypsin-treated embryos was infective in vivo.  相似文献   

13.
We examined transgenic-cattle production by DNA microinjection into 1-, 2-, and 4-cell embryos, analyzing the impact on calf size and subsequent viability. Embryos were either collected at an abattoir by flushing oviducts from superovulated and artificially inseminated cows (in vivo-derived) or obtained by in vitro maturation and in vitro fertilization of oocytes aspirated from excised ovaries (in vitro-derived). A human serum albumin (hSA) milk-expression DNA construct was microinjected, either in one of the visible pronuclei of in vitro- and in vivo-derived 1-cell embryos or in the nuclei of two blastomeres of 2- and 4-cell in vivo-derived embryos. Microinjection-induced mortality (lysis and developmental block) was equivalent ( approximately 40%) for all microinjected embryos. Embryos were co-cultured with BRL cells in B-2 medium containing 10% fetal calf serum (FSC). Overall, embryo development to morulae/blastocysts was significantly greater for in vivo-derived ova (15.5%) than for in vitro-derived oocytes (9.3%). All morulae and blastocysts were transferred to synchronized recipient females on Days 6-8 post-fertilization. A total of 189 calves were delivered. Birth weights were significantly greater for calves generated from in vitro-derived oocytes compared with those generated from in vivo-derived oocytes. One transgenic bull calf was obtained from the microinjection of a 2-cell embryo. Fluorescence in situ hybridization (FISH) analysis of lymphocytes detected one transgenic integration site in all cells. Transmission frequency of the hSA transgene in embryos obtained through IVM/IVF/IVC utilizing the semen of the transgenic calf confirmed that it was not mosaic.  相似文献   

14.
We described an exclusively in vitro procedure for cloning and recloning bovine embryos. Embryos obtained by IVM/IVF/IVC developed to the morula stage were used as blastomere donors in cunjunction with IVM recipient oocytes. Reconstructed embryos were developed in vitro in co-culture using bovine oviductal epithelial cells. The resulting morulae were used as donors for recloning under the same experimental conditions. No significant difference was observed between cloning and recloning in terms of development (rates of blastocysts: 12.9 versus 14.9%), in the number of nuclei per blastocyst (63.8 versus 49.1), or in pregnancy rates (35.7 versus 33.3%). The high variability observed between replicates and the correlation between results in first and second cycle nuclear transfer may suggest an inherant potential of individual donor embryos to support development by cloning.  相似文献   

15.
The objectives of this study were 1) to measure cleavage, blastocyst formation, and blastocyst hatching after in vitro maturation (IVM), fertilization (IVF) and culture (IVC) of oocytes aspirated from pregnant versus nonpregnant cows, and 2) to compare embryo development in co-culture with bovine oviductal epithelial cells versus cumulus cells. No differences in cleavage (38 versus 40%), blastocyst formation (13 versus 13%), or blastocyst hatching (53 versus 51%) were observed for in vitro-matured, fertilized, and cultured oocytes from pregnant versus nonpregnant cows, respectively (P > 0.05), indicating that nonpregnant and early-pregnant cows are equally acceptable donors of oocytes for IVM/IVF/IVC procedures. Cleavage (36 versus 40%), blastocyst formation (11 versus 12%), and blastocyst hatching (50 versus 55%) were not different for embryos co-cultured with oviductal epithelial cells versus cumulus cells (P > 0.05). Thus, equivalent embryo development can be obtained with co-culture systems commonly used for in vitro-derived bovine embryos. These results help to define variables that affect comparison of results across laboratories and that are relevant to the practical application of IVM/IVF/IVC procedures to cattle.  相似文献   

16.
To investigate the effects of water-soluble vitamin supplementation for IVM/IVC of porcine oocytes and evaluate maturation and developmental capacity in vitro, porcine cumulus oocyte complexes (COCs) was matured in NCSU-23-based medium with water-soluble vitamins for 44 h and then cultured in PZM-3 for 7 days following activation. The COCs were allocated into five treatment groups and matured in various concentrations of MEM vitamins (control, 0.05, 0.1, 0.2, 0.4, and 1x). Metaphase II plates of the cumulus-free oocytes were observed following Hoechest 33258 staining. The COCs were allocated into four treatment groups, matured in various concentrations of MEM vitamins (control, 0.05, 0.1, 0.2, and 0.4x) and cultured in PZM-3 following activation. Also, COCS were matured without MEM vitamins and cultured in PZM-3 with various concentrations (control, 0.1, 0.4, 1.0, and 2.0 x) of MEM vitamins. Furthermore, 2 x 2 factorial (IVM/IVC) experiments were performed in IVM medium with or without 0.05 x MEM vitamins and IVC medium with or without 0.4x MEM vitamins to examine the in vitro development of parthenogenetic embryos. Maturation rates of COCs treated with MEM vitamins did not differ significantly among groups. However, compared to the control group, oocytes matured with the addition of 0.05 x MEM vitamins developed to blastocysts at a higher percentage (P<0.05) following activation and culture in PZM-3 without MEM vitamins. Total cell number of blastocysts was significantly higher in the 0.05 x group. Addition of 0.4x MEM vitamins decreased (P<0.05) cleavage and blastocyst developmental rates compared with 0.05 x MEM vitamins-treated group. In contrast, addition of vitamins to PZM-3 medium for in vitro culture of activated porcine oocytes did not affect development. In conclusion, addition of a low concentration of MEM vitamins to IVM medium for porcine oocytes enhanced subsequent development and improved embryo quality.  相似文献   

17.
18.
In vitro fertilization and development of frozen-thawed bovine oocytes.   总被引:7,自引:0,他引:7  
Bovine oocytes were vitrified (V-oocytes) or frozen slowly (S-oocytes) at the germinal vesicle (GV) stage or after maturation in vitro (IVM) and their survival assessed morphologically and also by in vitro fertilization (IVF) and culture. The morphological survival of S-oocytes was 30.7% after freezing at the GV stage and 53.3% after IVM. The corresponding survival rates of V-oocytes were significantly lower, viz. 14.6 and 14.0%, respectively. The fertilization rate of S-oocytes frozen after IVM (51.0%) was lower than that of unfrozen controls (75.8%), but higher than after other treatments. Development continued in 16.0% of the fertilized S-oocytes, compared to 39.4% of control IVF zygotes and 1.6% developed into morulae or blastocysts (4.5% in controls). Only 0.8% of frozen-thawed GV stage oocytes and 4.6% of post-IVM V-oocytes cleaved after IVF and none formed morulae or blastocysts. Transfer of four embryos (two morulae and two blastocysts) derived from post-IVM S-oocytes into a recipient heifer resulted in pregnancy and the birth of twin calves.  相似文献   

19.
Almost 30 years after the first successful in vitro fertilization (IVF) in golden hamsters (Mesocricetus auratus), we report that IVF hamster embryos can develop in a chemically defined, protein-free culture medium into morulae and blastocysts, and produce normal offspring after transfer to recipients. When examined 96 h post-insemination, 82% (160/200) of IVF ova had cleaved to at least 2 cells, 55% (97/200) had developed beyond the 4-cell stage, and 22% (38/200) had developed into morulae/blastocysts. In vitro development of IVF embryos to greater than or equal to 8 cells was absolutely dependent on hypotaurine. Twenty living offspring were produced from transfer of IVF embryos to recipients, with an overall success rate of 5% and 17% for oviductal (2-cell) and uterine (8-cell/morulae) transfers, respectively. In vivo-fertilized pronucleate embryos collected 3 h after egg activation were less able to develop in vitro than embryos collected only 6 h later, revealing a critical influence of the oviduct within the first hours of embryo development. Hypotaurine partly compensated for the decreased oviductal exposure of early 1-cell embryos. Establishment of a key role for hypotaurine in hamster embryo development, support of IVF embryos to morula/blastocyst stages in vitro, and production of living offspring after IVF embryo transfer are significant steps towards the goal of obtaining comparative data on preimplantation embryogenesis.  相似文献   

20.
Yang BK  Yang X  Foote RH 《Theriogenology》1993,40(3):521-530
Growth factors were studied as a means of increasing the development of in vitro matured (IVM) and in vitro fertilized (IVF) oocytes into morulae or blastocysts. Cell numbers of blastocysts were also counted. In Experiment 1, 2- to 8-cell embryos derived from bovine IVM/IVF oocytes were randomly allotted to one of 3 culture groups: a) synthetic oviduct fluid (SOF); b) SOF + 10 ng/ml epidermal growth factor (EGF); or c) SOF + 100 ng/ml EGF; all 3 culture media contained 10% fetal bovine serum. Culture resulted in 12%, 23% and 14% (P>0.05), respectively, developing into morulae and blastocysts. In Experiment 2, 5 ng/ml of transforming growth factor B (1) (TGFB (1)) added to CR(1aa) medium containing BSA increased the percentage of blastocysts to 56% vs 40% for the control (P<0.05). In Experiment 3, EGF and TGFB(1), added singly and in combination to CR(1aa) did not produce a synergistic effect. More embryos developed into morulae and blastocysts (45%) in a bovine oviduct epithelial co-culture than in any other treatment except in CR(1aa) + EGF (34%; P>0.05). In Experiment 4, 0, 1 and 5 ng/ml of platelet derived growth factor (PDGF) added to CR(1aa) yielded 39%, 70% and 52% morulae and blastocysts, respectively (P<0.05). Cell number was not increased, indicating that growth factors can increase the proportion of embryos that develop into morulae and blastocysts without an increase in the cell number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号