首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutation of a CCG sequence in the 5'-untranslated region of the mitochondrially encoded cytochrome b mRNA in Saccharomyces cerevisiae results in destabilization of the message and respiratory deficiency of the mutant strain. This phenotype mimics that of a mutation in the nuclear CBP1 gene. Here it is shown that overexpression of the nuclear CBT1 gene, due to a transposon insertion in the 5'-untranslated region, rescues the respiratory defects resulting from mutating the CCG sequence to ACG. Overexpressing alleles of CBT1 are allelic to soc1, a previously isolated suppressor of cbp1ts-induced temperature sensitivity of respiratory growth. Quantitative primer extension analysis indicated that cbt1 null strains have defects in 5'-end processing of precursor cytochrome b mRNA to the mature form. Cbt1p is also required for stabilizing the mature cytochrome b mRNA after 5' processing.  相似文献   

3.
4.
5.
Mitochondrial biogenesis is dependent on both nuclearly and mitochondrially encoded proteins. Study of the nuclearly encoded mitochondrial gene products and their effect on mitochondrial genome expression is essential to understanding mitochondrial function. Mutations in the nuclear gene CBP1 of Saccharomyces cerevisiae result in degradation of mitochondrially encoded cytochrome b (cob) RNA; thus, the cells are unable to respire. Putative roles for the CBP1 protein include processing of precursor RNA to yield the mature 5' end of cob mRNA and/or physical protection of the mRNA from degradation by nucleases. To examine the activity of CBP1, we generated temperature-sensitive cbp1 mutant strains by polymerase chain reaction (PCR) mutagenesis and in vivo recombination. These temperature-sensitive cbp1 strains lack cob mRNA only at the nonpermissive temperature. Quantitative primer extension analyses of RNA from these strains and from a cbp1 deletion strain demonstrated that CBP1 is required for the stability of precursor RNAs in addition to production of the stable mature mRNA. Thus, CBP1 is not involved solely in the protection of mature cob mRNA from nucleases. Moreover, we found that mature mRNAs are undetectable while precursor RNAs are reduced only slightly at the nonpermissive temperature. Collectively, these data lead us to favor a hypothesis whereby CBP1 protects cob precursor RNAs and promotes the processing event that generates the mature 5' end of the mRNA.  相似文献   

6.
7.
8.
The cytochrome b (COB) gene is encoded by the mitochondrial genome; however, its expression requires the participation of several nuclearly encoded protein factors. The yeast Cbp1 protein, which is encoded by the nuclear CBP1 gene, is required for the stabilization of COB mRNA. A previous deletion analysis identified an 11-nucleotide-long sequence within the 5' untranslated region of COB mRNA that is important for Cbp1-dependent COB mRNA stability. In the present study, site-directed mutagenesis experiments were carried out to define further the features of this cis element. The CCG sequence within this region was shown to be necessary for stability. A change in residue 533 of Cbp1 from aspartate to tyrosine suppresses the effects of a single-base change in the CCG element. This is strong genetic evidence that the nuclearly encoded Cbp1 protein recognizes and binds directly to the sequence containing CCG and thus protects COB mRNA from degradation.  相似文献   

9.
Chen W  Islas-Osuna MA  Dieckmann CL 《Genetics》1999,151(4):1315-1325
The cytochrome b gene in Saccharomyces cerevisiae, COB, is encoded by the mitochondrial genome. Nuclear-encoded Cbp1 protein is required specifically for COB mRNA stabilization. Cbp1 interacts with a CCG element in a 64-nucleotide sequence in the 5'-untranslated region of COB mRNA. Mutation of any nucleotide in the CCG causes the same phenotype as cbp1 mutations, i.e., destabilization of both COB precursor and mature message. In this study, eleven nuclear suppressors of single-nucleotide mutations in CCG were isolated and characterized. One dominant suppressor is in CBP1, while the other 10 semidominant suppressors define five distinct linkage groups. One group of four mutations is in PET127, which is required for 5' end processing of several mitochondrial mRNAs. Another mutation is linked to DSS1, which is a subunit of mitochondrial 3' --> 5' exoribonuclease. A mutation linked to the SOC1 gene, previously defined by recessive mutations that suppress cbp1 ts alleles and stabilize many mitochondrial mRNAs, was also isolated. We hypothesize that the products of the two uncharacterized genes also affect mitochondrial RNA turnover.  相似文献   

10.
11.
The yeast nuclear gene CBP2 was previously proposed to code for a protein necessary for processing of the terminal intron in the cytochrome b pre-mRNA (McGraw, P., and Tzagoloff, A. (1983) J. Biol. Chem. 258, 9459-9468). In the present study we describe a mitochondrial mutation capable of suppressing the respiratory deficiency of cbp2 mutants. The mitochondrial suppressor mutation has been shown to be the result of a precise excision of the last intervening sequence from the cytochrome b gene. Strains with the altered mitochondrial DNA have normal levels of mature cytochrome b mRNA and of cytochrome b and exhibit wild type growth on glycerol. These results confirm that CBP2 codes for a protein specifically required for splicing of the cytochrome b intron and further suggest that absence of the intervening sequence does not noticeably affect the expression of respiratory function in mitochondria.  相似文献   

12.
13.
14.
In the green alga Chlamydomonas reinhardtii, the nuclear mutations F34 and F64 have been previously shown to abolish the synthesis of the photosystem II core polypeptide subunit P6, which is encoded by the chloroplast psbC gene. In this report the functions encoded by F34 and F64 are shown to be required for translation of the psbC mRNA, on the basis of the finding that the expression of a heterologous reporter gene fused to the psbC 5' nontranslated leader sequence requires wild-type F34 and F64 alleles in vivo. Moreover, a point mutation in the psbC 5' nontranslated leader sequence suppresses this requirement for wild-type F34 function. In vitro RNA-protein cross-linking studies reveal that chloroplast protein extracts from strains carrying the F64 mutation contain an approximately 46-kDa RNA-binding protein. The absence of the RNA-binding activity of this protein in chloroplast extracts of wild-type strains suggests that it is related to the role of the F64-encoded function for psbC mRNA translation. The binding specificity of this protein appears to be for an AU-rich RNA sequence motif.  相似文献   

15.
16.
17.
The cytochrome b gene of Saccharomyces cerevisiae D273-10B was previously shown to be composed of three exons and two introns (Nobrega, F.G., and Tzagoloff, A. (1980) J. Biol. Chem. 255, 9828-9837). In the present study nuclear respiratory deficient mutants of this strain have been screened for defects in processing of the cytochrome b pre-mRNA. Fifteen independently isolated mutants lacking cytochrome b have been assigned to a single genetic complementation group (G36). Members of this complementation group are blocked in the excision of the second intervening sequence of cytochrome b and consequently are unable to produce the mature mRNA. The wild type gene defined by this class of mutants has been named CBP2. A recombinant plasmid with the CBP2 gene has been selected from a library of wild type nuclear DNA and further subcloned by transformation of a cbp2 mutant to respiratory competency. The smallest plasmid (pG36/T5) capable of complementing cbp2 mutants and of restoring their ability to complete processing of the cytochrome b pre-mRNA has a nuclear DNA fragment of 2.6 kilobase pairs inserted at the BamHI site of the yeast vector YEp13. The sequence of the cloned DNA fragment has revealed an 1890-nucleotide-long reading frame encoding a basic protein with a molecular weight of 74,000. Deletion analysis confirms that the entire reading frame is required for complementation of cbp2 mutants. This reading frame is proposed to code for the CBP2 gene product.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号