首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of Escherichia coli K-12 mutans HFETn5, HFETn9 and LFETn9 have been studied. The majority of mutations were shown to have pleiotropic effect. Some of them increase cell sensitivity to UV light and mitomycin C and affect efficiency of homologous recombination in transduction and conjugation. The level of spontaneous mutagenesis is increased in a number of mutants. None of the mutations isolated affect frequency of transposition of Tn5 from bacteriophage lambda::Tn5 into the chromosome. Based on analysis of properties of hfeTn5-09 and hfeTn9 mutations and on the date of preliminary mapping of hfeTn5-09 mutation, these mutations were considered to be novel. It is shown that the processes of precise excision of Tn5 and Tn9 transposons may be accomplished by at least two pathways, one of them being dependent on recA gene functions.  相似文献   

2.
We have physically and genetically characterized 20 symbiotic and 20 auxotrophic mutants of Rhizobium meliloti, the nitrogen-fixing symbiont of alfalfa (Medicago sativa), isolated by transposon Tn5 mutagenesis. A "suicide plasmid" mutagenesis procedure was used to generate TN-5-induced mutants, and both auxotrophic and symbiotic mutants were found at a frequency of 0.3% among strains containing random TN5 insertions. Two classes of symbiotic mutants were isolated: 4 of the 20 formed no nodules at all (Nod-), and 16 formed nodules which failed to fix nitrogen (Fix-). We used a combination of physical and genetic criteria to determine that in most cases the auxotrophic and symbiotic phenotypes could be correlated with the insertion of a single Tn5 elements. Once the Tn5 element was inserted into the R. meliloti genome, the frequency of its transposition to a new site was approximately 10-8 and the frequency of precise excision was less than 10-9. In approximately 25% of the mutant strains, phage Mu DNA sequences, which originated from the suicide plasmid used to generate the Tn5 transpositions, were also found in the R. meliloti genome contiguous with Tn5. These later strains exhibited anomalous conjugation properties, and therefore we could not correlate the symbiotic phenotype with a Tn5 insertion. In general, we found that both physical and genetic tests were required to fully characterize transposon-induced mutations.  相似文献   

3.
HfeTn5-(04,06) and IfeTn9 mutations increase efficiency of precise excision of Tn5, Tn10 and decrease that of Tn9. These mutations have been mapped in uvrD gene. In LFETn9 and UVRE502 mutants, the multicopy plasmid pEM61 carrying the cloned uvrD gene complements LFETn9- phenotype (Low Frequency Excision of Tn9). These results indicate that the uvrD gene product plays different role in excision of transposons with long and short inverted repeats. The mechanism of this effect is discussed.  相似文献   

4.
A I Bukhari  S Froshauer 《Gene》1978,3(4):303-314
We have isolated mutants of bacteriophage Mu carrying the X mutations caused by the insertion of cam (Tn9), a transposon for chloramphenicol resistance. The Mu X cam mutants were obtained by selecting for heat-resistant survivors of a Mucts62, P1cam dilysogen. Like the previously described X mutants, Mu X cam mutants are defective prophages which can be excised from the host DNA at a frequency of 10(-5) to 10(-7) per cell. Tn9 insertions in Mu X cam mutants are located within 5000 base pairs of the left end of Mu DNA in a region that controls early replication functions of Mu. There is one EcoRI cleavage site in Tn9. The Tn9 transposon itself can be excised precisely from the Mu X cam mutants to generate wild type Mu. In most Mu X cam mutants, precise excision of Tn9 occurs at a low frequency (10(-6) per cell), whereas in some, the frequency is higher (10(-4) per cell). Mu X cam prophages can replicate after induction with the help of wild type Mu. The lysates containing Mu X cam particles, however, fail to transduce chloramphenicol resistance at a high frequency; Mu X cam mutants apparently have a cis dominant defect in integration.  相似文献   

5.
Nagel R  Chan A 《Mutation research》1999,433(2):99-107
Mitomycin C (MMC) treatment or mutations in uvrD enhance the frequency of Tn10 precise excision. We have shown previously that several repair-recombination genes, such as recA, ruv and recF are involved in the induced excision process. In this study, we find that other genes belonging to the RecBC and RecF sexual recombination pathways also participate in this process since mutations in recB, sbcB or recO diminish, though to different degrees, the frequency of Tn10 precise excision induced by MMC treatment or by uvrD mutants. Pairwise combinations of some of these mutations were also tested for Tn10 induced precise excision; most of these double mutants showed additive effects in reducing the frequency of the excision process. The results of these studies suggest that recombinational-repair genes, particularly recF, sbcB and recO have different roles in the induced excision of Tn10 than in recombinational mating.  相似文献   

6.
Plasmid pNM1, the derivative of R100.1, has been constructed by insertion of transposon Tn5 into structural tet genet (Tn10) of the parental plasmid. The frequency of precise excision of Tn5 from plasmidic genome is 10(-5). The high frequency of precise excision obtained in this system permits one, to use it for isolation of mutants having low frequencies of precise excision. Two mutants were isolated in which the frequencies of precise excision of Tn5 were decreased for two orders. The pex1 and pex2 mutations responsible for the effect decrease the precise excision of Tn5 from R100.1 as well as from RP4 genomes.  相似文献   

7.
The affect of mutations in chromosomal genes determining the realization of RecBC and RecF pathways of recombination in E. coli K12 on the frequency of transposon Tn5 precise excision from the genome of the conjugative plasmid pNM1 has been demonstrated. The pNM1 plasmid is a derivative of R100.1 and differs from the latter in the presence of Tn5 inactivating the tet gene of transposon Tn10.  相似文献   

8.
J Collins  G Volckaert  P Nevers 《Gene》1982,19(1):139-146
The transposon Tn5 contains a unique central region bordered by 1.5-kb inverted repeats. The in vitro deletion of the centre of Tn5, with a restriction endonuclease (XhoI) which cuts within the inverted repeats leads to the production of a palindrome on subsequent ligation. This palindromic region is unstable on subsequent transformation into Escherichia coli (Collins, 1981). Precise excision of the Tn5 region plus one copy of the bracketing 9-bp direct repeat occurred in about one-third of the transformants. The rest of the transformants contain only remnants of the inverted repeat. Sequence analysis indicated that deletion had occurred between short direct repeats. The precise excision of these "nearly precise" excision products continued with high frequency and was found to be affected by mutations that interfere with the normal precise excision of transposons. In a recB, sbcB host precise excision was markedly reduced. A common mechanism is proposed for all recA-independent deletions occurring in E. coli.  相似文献   

9.
The plasmid-transposon Tn9-322 was constructed by inverted transposition from the pBR322::Tn9 plasmid. The precise excision of the Tn9-322 transposon from the proB gene site can proceed by the Campbell's model. This fact was demonstrated by appearance of the plasmid-transposons after their precise excision. They contain two IS1 elements flanking a short direct repeat of the target DNA. The recombinational mechanism of precise excision of Tn9 type transposons seems not to be alternative but looks as an additional one to a well-known slippage mechanism proved for Tn5 and Tn10.  相似文献   

10.
Excision of the prokaryotic transposon Tn10 is a host-mediated process that occurs in the absence of recA function or any transposon-encoded functions. To determine which host functions might play a role in transposon excision, we have isolated 40 mutants of E. coli K12, designated tex, which increase the frequency of Tn10 precise excision. Three of these mutations (texA) have been shown to qualitatively alter RecBC function. We show that 21 additional tex mutations with a mutator phenotype map to five genes previously identified as components of a methylation-directed pathway for repair of base pair mismatches: uvrD, mutH, mutL, mutS and dam. Previously identified alleles of these genes also have a Tex phenotype.--Several other E. coli mutations affecting related functions have been analyzed for their effects on Tn10 excision. Other mutations affecting the frequency of spontaneous mutations (mutT, polA, ung), different excision repair pathways (uvrA, uvrB) or the state of DNA methylation (dcm) have no effect on Tn10 excision. Mutations ssb-113 and mutD5, however, do increase Tn10 excision.--The products of the mismatch correction genes probably function in a coordinated way during DNA repair in vivo. Thus, mutations in these genes might also enhance transposon excision by a single general mechanism. Alternatively, since mutations in each gene have qualitatively and quantitatively different effects on transposon excision, defects in different mismatch repair genes may enhance excision by different mechanisms.  相似文献   

11.
Four mutations were studied which lead to increasing the frequency of transposon Tn1 translocation into different replicons. These mutations (het1, het2, het3 and het4) increase the frequency of Tn1 translocation 10-20-fold. The het1 mutation is recessive and has been localized in the 90-94.5 min region of the bacterial chromosome. The mutation effects Tn1 transposition in the presence of F plasmid only. As we have demonstrated recently, F-plasmid inhibits Tn1 transposition in Escherichia coli cells. The het1 mutation eliminates this inhibition. Unlike het2, het3 and het4 mutations, het1 is responsible for resistance to male phages f1, f2, MS2 and inhibition of conjugative transfer in F+ bacteria.  相似文献   

12.
Precise excision of transposon Tn10 results in reversion of the Trp- phenotype to Trp+ in a trp-1014::Tn10 strain of Salmonella typhimurium, and also occurs at a markedly higher frequency in a strain carrying the temperature-sensitive polA7 allele. The frequency with which precise excision events occurs can be modified by the plating medium, results indicating that the great majority of mutants which arise on broth-supplemented or tryptophan-supplemented minimal media actually arise on the selective plating medium. Trp+ revertants (1000) arising from excision of Tn10 were purified by re-streaking for single colonies; none were found to retain the Tn10 encoded resistance to tetracycline. Yields of Trp+ revertants of the polA7 strain were consistently higher when glycerol rather than glucose was used as sole carbon source in the selective medium. Clean excision of Tn10 can also be increased by ultraviolet irradiation in (R) plasmid-free strains, and is further increased in strains carrying an N-group plasmid (R205, R46 or pKM101). Ultraviolet-induced precise excision of Tn10 also occurs at a much enhanced frequency in a strain with a deletion through the uvrB gene; in this case, however, the addition of plasmid pKM101 leads to a decrease in yields of ultraviolet-induced precise excision events.  相似文献   

13.
A transposon Tn10 vehicle was developed using a self transmissible (Tra+) plasmid pRK2013 having narrow host range ori of replication (ColEl). The construct pSA10-3 carrying Tn10 was useful in efficiently transferring transposon Tn10 from E. coli into various rhizobia. The ColEl replicon conferred suicidal property to vector in Rhizobium background where it falls to replicate stably. Thus this plasmid can be employed to cause independent insertion mutations in rhizobia by Tn10 transposition. The frequency of tetracycline resistant colonies of Rhizobium (Tn10 mutants) was approximately 105 folds higher than the spontaneous TetR mutants. Reversion frequency of these mutants was less than 10?8 indicating adequate stability of Tn10 mutations.  相似文献   

14.
The mutation drpA1 defines a new gene in Escherichia coli K-12 that maps at about 5.2 min. This mutation was obtained after enriching a population of cells for temperature sensitive dna mutations with the [3H]thymidine "suicide" technique followed by screening for mutants defective in transposon Tn5 precise excision. When growing cells carrying the drpA1 allele were shifted to the nonpermissive temperature, we showed that DNA, RNA, and protein syntheses shut off quickly, with the cessation of RNA synthesis occurring first. A recombinant plasmid between pBR322 and an HindIII fragment from wild-type E. coli restores the growth defect in drpA1 mutants. Using transposon Tn5 mutagenesis of this plasmid, we have been able to correlate the presence of a 68-kilodalton protein, as observed with the maxicell technique, with the ability of this plasmid to restore growth to drpA1 mutants.  相似文献   

15.
Nagel R  Chan A 《Mutation research》2000,459(4):275-284
The precise excision of transposon Tn10 and a mini-Tn10 derivative, inserted in the gal or lac operons, was studied in dnaB252 and dnaE486 temperature-sensitive mutants of Escherichia coli. dnaB codes for a DNA replication helicase and dnaE for the alpha subunit of DNA polymerase III. Mutations in these genes were found to enhance, at the permissive temperature, the precise excision of both genetic elements. The increase factor was much more pronounced for the dnaB252 mutant with the transposons inserted in gal. The stimulated excision was only partially affected by a recA null mutation but was significantly reduced by introduction of recF null or ruvA mutations. A model involving template switching of the polymerase between the direct repeats flanking the transposons, on the same strand or between sister strands, could account for the observed results.  相似文献   

16.
Activation of Silent Genes by Transposons Tn5 and Tn10   总被引:8,自引:1,他引:7       下载免费PDF全文
A. Wang  J. R. Roth 《Genetics》1988,120(4):875-885
  相似文献   

17.
Postexcision transposition of the transposon Tn10 in Escherichia coli K12   总被引:2,自引:0,他引:2  
An experimental analysis of the fate of transposon Tn10 after excision from a proA::Tn10 site localized on the plasmid F' leads to the conclusions: 1. The precise excision is a progressive process. Its probability is estimated per time unit. 2. An excised Tn10 is always integrated into a different genetic locus. 2. An excised Tn10 is always integrated into a different genetic locus. 3. The kinetics of postexcision transposition are sometimes very slow. The excised transposon is inherited in one cell line in spite of cell multiplication. 4. The processes of excision and secondary insertion have no absolute requirement for the recA+ genotype but they are strongly enhanced in recA+ cells. 5. The kinetics of postexcision transposition are strongly dependent on the genetic site from which the transposon was excised. 6. The probability of postexcision transposition is fully determined by the probability of excision and depends on the genotype of the host and many other factors.  相似文献   

18.
19.
The influence of the irradiation of different kinds on the induction of the structural mutations in the bacteria Escherichia coli is considered. The regularities of the Tn10 precise excision after accelerated 4He and 12C ions irradiations with different linear energy transfer (LET) were investigated. Dose dependences of the survival and relative frequency of the Tn10 precise excision were obtained. It was shown, that the relative frequency of the Tn10 precise excision is the exponential function from the irradiation dose. Relative biological efficiency (RBE), and relative genetic efficiency (RGE) were calculated, and were treated as the function of the LET.  相似文献   

20.
Precise excision of transposon Tn10, as judged by reversion of Salmonella typhimurium strain LT2 trp1014::Tn10 to Trp+, was not detectably enhanced following exposure to 9-aminoacridine, 5-azacytidine or mitomycin C in conventional treat-and-plate assays. By contrast, 7/13 chemicals, including 5-azacytidine and mitomycin C, were found to be capable of enhancing precise excision of Tn10 when tested in modified fluctuation assays. Despite earlier reports, precise excision is one activity of transposons which is not therefore refractory to enhancement by chemical mutagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号