首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha-1,4-glucan phosphorylase (alpha-1,4-glucan: orthophosphate glucosyltransferase; EC 2.4.1.1) associated with the particulate cell fraction of Streptococcus mitior strain S3 was compared with the soluble maltodextrin phosphorylase that had been previously isolated from the same organism (Walker et al., 1969). The particulate enzyme was more sensitive to the glycogen content of the cell than the soluble euzyme; its activity was highest when the cells were grown under conditions favoring high glycogen storage. Substrate specificities of the two high activity towards endogenous glycogen, whereas low-molecular-weight maltodextrins were the preferred substrates for the soluble phosphorylase. The purification of the particulate phosphorylase included incubation of the particulate fraction in 160 mM sodium phosphate-10 mM sodium citrate-0.1% (wt/vol) Triton X-100 buffer (pH 6.7) and ion-exchange chromatography on diethylamino-ethyl- Sephadex A-50. The purified enzyme was fully soluble. The value for the purification factor was variable and depended on (i) the substrate used and (ii) whether the synthetic or the degradative reaction was being measured. The solubilization resulted in considerable changes in the properties of the phosphorylase: the pH optimum for activity was raised from 6.0 to 7.0-7.5 and the substrate specificity was altered. Consequently, the purified enzyme bore greater similarity to the soluble maltodextrin phosphorylase. The reported results are best explained in terms of a single phosphorylase, the specificity which is determind by its binding state in the cell. The enzyme acts as a glycogen phosphorylase in the particulate state and as a maltodextrin phosphorylase when soluble. The equilibrium between the two forms is related to the glycogen content of the cells.  相似文献   

2.
Triton X-100 is known to affect phospholipid metabolism and the generation of various signal molecules from cellular phospholipids. In the present work the effect of Triton X-100 on phospholipid metabolism of human decidua and of the primordial placenta (chorion frondosum) was studied. Triton X-100 (0.05%, v/v) added to tissue mince 30 min before the end of a 60 min incubation stimulated 2-4-fold (decidua) and 4-6-fold (placenta) the incorporation of [32P]phosphate ([32P]Pi) into phosphatidic acid, while markedly decreasing the labeling of phosphatidylcholine. Triton X-100 had no effect on the labeling of phosphatidylinositol in the decidua, and only a slight increase was observed in the placenta. When labeled glucose was used to assess phospholipid synthesis, the addition of Triton had no effect on phosphatidic acid, while decreasing the synthesis of phosphatidylcholine. Incorporation of [32P]Pi into phosphatidic acid was not accelerated by a submicellar concentration (0.01%) of Triton, whereas the synthesis of phosphatidylcholine was decreased irrespective of detergent concentration. Anionic or cationic detergents could not mimic the action of Triton on phosphatidic acid synthesis. Although Triton inhibited the synthesis of ATP in a dose-dependent manner, this could not account for the above results. Instead, it is suggested that diacylglycerol kinase and phosphocholine:CTP cytidylyltransferase are possible targets of the action of Triton X-100.  相似文献   

3.
Synthesis of polyphosphoinositides in vertebrate photoreceptor membranes   总被引:1,自引:0,他引:1  
Rod outer segments isolated from bovine retinas incorporated 32P into phospholipids after incubation with [gamma-32P]ATP in a Mg2+-containing medium. Only phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate, and phosphatidate were labelled. The incorporation of label into lipids was detected as early as 20 s after the start of incubation and the products were stable for at least 10 min. The reactions were time, protein and ATP-concentration dependent. Entire rod outer segments showed higher diacylglycerol kinase and lower phosphatidylinositol and phosphatidylinositol 4-phosphate kinase activities than the disc membranes obtained from them. Exogenously added phosphatidylinositol (up to 1 mM) in the presence of Triton X-100 increased phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate labelling in rod outer segments (8- and 6-fold, respectively). Triton X-100 at a concentration of 0.4% stimulated phosphorylation of endogenous phosphoinositides. Diacylglycerol kinase activity was largely suppressed by the detergent, but this effect was partially reversed by addition of phosphatidylinositol. It is suggested that the rod outer segments contain phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase bound to disc membranes, as well as an active diacylglycerol kinase occurring either as a soluble or a peripherally bound protein in disc membranes.  相似文献   

4.
Sodium oleate is able to activate soluble protein kinase C (Murakami, K., Chan, S. Y., and Routtenberg, A. (1986) J. Biol. Chem. 261, 15424-15429) but is unable to activate membrane-bound enzyme (El Touny, S., Khan, W., and Hannun, Y. (1990) J. Biol. Chem. 265, 16437-16443). Because physiologic interactions of fatty acids with protein kinase C occur in the presence of membranes, the following studies were conducted to evaluate the effects of surfaces (detergent micelles or platelet membranes) on the activation of protein kinase C by oleate. At concentrations at or above the critical micellar concentration (CMC) of Triton X-100, oleate was present primarily in Triton X-100/oleate-mixed micelles, as determined by gel permeation chromatography and equilibrium dialysis binding studies. At concentrations slightly below the CMC for Triton X-100, the presence of oleate caused the formation of a limited number of mixed micelles. Studies of the dose-dependent activation of purified platelet protein kinase C by sodium oleate in the presence of different concentrations of Triton X-100 indicated that only unbound oleate was able to activate protein kinase C. Platelet protein kinase C was resolved into two major isoenzymes (types II (beta) and III (alpha)) which displayed nearly identical interaction with oleate. Activation of protein kinase C by oleate in a physiologic setting employing platelet substrates and endogenous platelet protein kinase C was investigated. Oleate potently activated protein kinase C in the cytosolic compartment. In platelet homogenates as well as in a reconstituted platelet cytosol and membrane system, the dose dependence of protein kinase C on oleate showed a significant shift to the right. Approximately 30% of oleate was associated with platelet cytosol and 70% was associated with platelet membranes. Partitioning of oleate into the two platelet compartments showed little change with pH, temperature, or duration of incubation. When corrected for free oleate concentration, activation of protein kinase C by oleate showed identical dose dependence in cytosol and homogenate. Arachidonate, a potential physiologic activator of protein kinase C, showed similar behavior as oleate although only 30% of arachidonate partitioned into platelet membranes with the majority of arachidonate (70%) remaining in the cytosolic fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
A new Ca2+/calmodulin-dependent serine kinase was isolated from rat parotid gland acinar cells following chronic treatment with the beta-agonist isoproterenol. A single-step purification was performed on a calmodulin-agarose affinity column, following solubilization with Triton X-100. Among various substrates tested, bovine galactosyltransferase was the preferred substrate of the kinase, followed by glycogen synthetase greater than histone greater than phosphodiesterase greater than phenylalanine hydroxylase greater than phosphorylase b greater than bovine serum albumin. In comparison, a spleen preparation of Ca2+/calmodulin-dependent kinase did not show galactosyltransferase to be the preferred substrate. Thus, the enzyme would appear to be similar to the human galactosyltransferase-associated kinase. The kinase activity was saturable with 100 microM Ca2+ and 2 microM calmodulin. The molecular mass determined by nondenaturing and sodium dodecyl sulfate polyacrylamide gel electrophoreses was 75 kDa with a pI of 4.3. The Vmax was 3500 mumol/(min.mg protein) with a Km of 1.6 microM for the transferase substrate. Leukotriene C and prostaglandin E2 were found to be specific noncompetitive inhibitors of the rat galactosyltransferase-associated kinase.  相似文献   

6.
Succinate dehydrogenase (SDH) was solubilized from membranes of Mycobacterium phlei by Triton X-100 with a recovery of about 90%. The solubilized SDH was purified about 90-fold by Sephacryl S-300, DEAE-cellulose, hydroxylapatite, and isoelectric focusing in the presence of Triton X-100 with a 20% recovery. SDH was homogeneous, as determined by polyacrylamide gel electrophoresis in nondenaturing gels containing Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme revealed two subunits with molecular weights of 62,000 and 26,000. SDH is a flavoprotein containing 1 mol of flavin adenine dinucleotide, 7 to 8 mol of nonheme iron, and 7 to 8 mol of acid-labile sulfide per mol of protein. Using phenazine methosulfate and 2,6-dichloroindophenol as electron acceptors, the enzyme had an apparent Km of 0.12 mM succinate. SDH exhibited a sigmoidal relationship of rate to succinate concentration, indicating cooperativity. The enzyme was competitively inhibited by fumarate with a Ki of 0.15 mM. In the absence of Triton X-100, the enzyme aggregated, retained 50% of the activity, and could be resolubilized with Triton X-100 with full restoration of activity. Cardiolipin had no effect on the enzyme activity in the absence of Triton X-100, but it stimulated the activity by about 30% in the presence of 0.1% Triton X-100 in the assay mixture. Menaquinone-9(2H), isolated from M. phlei, had no effect on the enzyme activity either in the presence or absence of Triton X-100.  相似文献   

7.
Molecular structures related to phosphorylase kinase have been localized by light and electron microscopy in tissue sections of rabbit skeletal muscle employing polyclonal antibodies directed against the holoenzyme as well as monoclonal antibodies specific for its alpha-, beta- or gamma-subunits. In frozen sections of prefixed muscle fibres both known major regions of glycogen deposition, the intermyofibrillar space and the perinuclear area, are stained predominantly. In sections of unfixed muscle in which cytosolic phosphorylase kinase was removed by extensive washes prior to immunostaining the immunolabel is mainly associated with the sarcoplasmic reticulum (SR). This membrane location is further confirmed by immunoblot analysis of proteins solubilized from isolated SR with Triton X-114. Employing monoclonal antibodies two membrane proteins are identified as the alpha- and beta-subunits of phosphorylase kinase by Western blots. Immunoprecipitates reveal also the gamma-subunit; the delta-subunit, i.e., calmodulin, is enriched with the solubilized enzyme. It proves that a SR membrane associated form of holophosphorylase kinase exists in muscle. Functionally, this kinase might be involved in phosphorylation of phosphatidylinositol present on the SR Ca2+ transport ATPase and thereby might play a role in regulation of Ca2+ transport.  相似文献   

8.
We optimized a clinical assay developed for measuring total acrosin activity for mammalian and fish semen for use in turkey spermatozoa. The main modifications included dilution of semen to a final concentration of 25 to 1000 x 10(3) spermatozoa, an increase of Triton X-100 concentration to 0.05% and 1 hr preincubation without substrate, Acrosin activity in turkey spermatozoa was much higher than in human spermatozoa (about 100-times) but similar to that of boar sperm. To optimize this assay for turkey spermatozoa, it was necessary to use higher Triton X-100 concentrations in the reaction mixture. There was a better catalytic efficiency at higher temperatures and a special requirement for a preincubation period for proacrosin activation. We observed high inhibition of acrosin activity by zinc added during preincubation (90% at 0.01 mM of zinc chloride). Benzamidine also inhibited turkey acrosin, and the extent of inhibition was similar for the incubation or preincubation period. When zinc ions were added during incubation, this inhibition was lower (24%). The results suggest that zinc influences proacrosin activation of turkey spermatozoa. This influence may be important for successful long-term storage of spermatozoa in the hen's oviduct.  相似文献   

9.
In liver cells isolated from fed female rats, glucagon (290nM) increased adenosine 3':5'-monophosphate (cyclic AMP) content and decreased cyclic AMP binding 30 s after addition of hormones. Both returned to control values after 10 min. Glucagon also stimulated cyclic AMP-independent protein kinase activity at 30 s and decreased protein kinase activity assayed in the presence of 2 muM cyclic AMP at 1 min. Glucagon increased the levels of glycogen phosphorylase a, but there was no change in total glycogen phosphorylase activity. Glucagon increased glycogen phosphorylase a at concentrations considerably less than those required to affect cyclic AMP and protein kinase. The phosphodiesterase inhibitor, 1-methyl-3-isobutyl xanthine, potentiated the action of glucagon on all variables, but did not increase the maximuM activation of glycogen phosphorylase. Epinephrine (1muM) decreased cyclic AMP binding and increased glycogen phosphorylase a after a 1-min incubation with cells. Although 0.1 muM epinephrine stimulated phosphorylase a, a concentration of 10 muM was required to increase protein kinase activity. 1-Methyl-3-isobutyl xanthine (0.1 mM) potentiated the action of epinephrine on cyclic AMP and protein kinase. (-)-Propranolol (10muM) completely abolished the changes in cyclic AMP binding and protein kinase due to epinephrine (1muM) in the presence of 0.1mM 1-methyl-3-isobutyl xanthine, yet inhibited the increase in phosphorylase a by only 14 per cent. Phenylephrine (0.1muM) increased glycogen phosphorylase a, although concentrations as great as 10 muM failed to affect cyclic AMP binding or protein kinase in the absence of phosphodiesterase inhibitor. Isoproterenol (0.1muM) stimulated phosphorylase and decreased cyclic AMP binding, but only a concentration of 10muM increased protein kinase. 1-Methyl-3-isobutyl xanthine potentiated the action of isoproterenol on cyclic AMP binding and protein kinase, and propranolol reduced the augmentation of glucose release and glycogen phosphorylase activity due to isoproterenol. These data indicate that both alpha- and beta-adrenergic agents are capable of stimulating glycogenolysis and glycogen phosphorylase a in isolated rat liver cells. Low concentrations of glucagon and beta-adrenergic agonists stimulate glycogen phosphorylase without any detectable increase in cyclic AMP or protein kinase activity. The effects of alpha-adrenergic agents appear to be completely independent of changes in cyclic AMP protein kinase activity.  相似文献   

10.
Pseudomonas pseudoalcaligenes can only form d-malate from maleate after incubation of the cells with a solvent or a detergent. The effect of the detergent Triton X-100 on d-malate production was studied in more detail. The longer the cells were incubated with Triton X-100, the higher was the d-malate production activity, until the maximal malease activity was reached. Incubation of P. pseudoalcaligenes cells with Triton X-100 also resulted in an increase in the protein concentration of the supernatant, indicating that cell lysis had occurred. The rate at which the d-malate production activity increased was dependent on the Triton X-100 concentration and on the cell density. Also the rate at which lysis occurred depended on the Triton X-100 concentration.  相似文献   

11.
To test a possibility that free band 3 and ankyrin-linked band 3 are exchanged in situ, band 3 was labeled with 125I, using intact red blood cells and lactoperoxidase. The cytoplasmic surface of this labeled band 3 was considered to be intact. When Triton shells were incubated with Triton supernatants prepared from 125I-labeled intact erythrocytes at 37 degrees C in the presence of Mg-ATP under isotonic conditions, the incorporation of free 125I-labeled band 3 to shells was observed. This incorporation was affected by the presence of Triton X-100 in the incubation mixture, and significantly decreased when the content of Triton X-100 was less than 0.04% (v/v). On the other hand, ankyrin-linked 125I-labeled band 3 was released when shells prepared from 125I-labeled intact erythrocytes were incubated with the Triton supernatants at 37 degrees C under the same condition as when free 125I-labeled band 3 incorporation was observed. These results strongly suggest that free and ankyrin-linked band 3 exchanged with each other in the presence of Triton X-100. A water-soluble 43 kDa fragment of band 3 inhibited the incorporation of free 125I-labeled band 3 to the shells and also inhibited the Mg-ATP-dependent shape change of ghosts in the absence of Triton X-100. Both of these inhibitory effects remained, even after 10 min of heat treatment at 100 degrees C, but drastically decreased by treatment with trypsin. Our results strongly suggest that a dynamic exchange of the free band 3 for ankyrin-linked band 3 may occur in intact erythrocytes, and it may even contribute to the shape change of erythrocytes.  相似文献   

12.
The mechanism for glycogen synthesis stimulation produced by adenosine, fructose, and glutamine has been investigated. We have analyzed the relationship between adenine nucleotides and glycogen metabolism rate-limiting enzymes upon hepatocyte incubation with these three compounds. In isolated hepatocytes, inhibition of AMP deaminase with erythro-9-(2-hydroxyl-3nonyl)adenine further increases the accumulation of AMP and the activation of glycogen synthase and phosphorylase by fructose. This ketose does not increase cyclic AMP or the activity of cyclic AMP-dependent protein kinase. Adenosine raises AMP and ATP concentration. This nucleotide also activates glycogen synthase and phosphorylase by covalent modification. The correlation coefficient between AMP and glycogen synthase activity is 0.974. Nitrobenzylthioinosine, a transport inhibitor of adenosine, blocks (by 50%) the effect of the nucleoside on AMP formation and glycogen synthase but not on phosphorylase. 2-Chloroadenosine and N6-phenylisopropyladenosine, nonmetabolizable analogues of adenosine, activate phosphorylase (6-fold) without increasing the concentration of adenine nucleotides or the activity of glycogen synthase. Cyclic AMP is not increased by adenosine in hepatocytes from starved rats but is in cells from fed animals. [Ethylenebis (oxyethylenenitrilo)]tetraacetic acid (EGTA) blocks by 60% the activation of phosphorylase by adenosine but not that of glycogen synthase. Glutamine also increases AMP concentration and glycogen synthase and phosphorylase activities, and these effects are blocked by 6-mercaptopurine, a purine synthesis inhibitor. Neither adenosine nor glutamine increases glucose 6-phosphate. It is proposed that the observed efficient glycogen synthesis from fructose, adenosine, and glutamine is due to the generation of AMP that activates glycogen synthase probably through increases in synthase phosphatase activity. It is also concluded that the activation of phosphorylase by the above-mentioned compounds can be triggered by metabolic changes.  相似文献   

13.
Plasma membranes were isolated from rat liver homogenates either by differential centrifugation or by fractionation in discontinuous sucrose density gradients. Both membrane preparations contained about 17% of the total uridine phosphorylase (EC 2.4.2.3) activity and 44% of the total 5'-nucleotidase (EC 3.1.3.5). The enrichment factor for uridine phosphorylase in the fractions prepared by differential centrifugation was about 2.8 and by the gradient method, as much as 11.0; the respective enrichment factors for 5'-nucleotidase were 1.8 and 9.5. Uridine phosphorylase activity of isolated plasma membrane fractions was stimulated 2.5-fold by 0.1% Triton X-100. Unlike the cytosol enzyme, uridine phosphorylase of plasma membranes showed little or no deoxyuridine-cleaving activity. Contamination of the membrane fractions by thymidine phosphorylase (EC 2.4.2.4) of the cytosol was negligible. The other subcellular organelles obtained by either procedure and characterized by marker enzyme activities were found not to contain significant uridine phosphorylase activity; the cytosol fractions contained just over 70% of the total uridine phosphorylase activity with an enrichment of only about 2.8-fold. The activity of the cytosol enzyme was not stimulated by Triton X-100.  相似文献   

14.
The effect of Triton X-100 on catalytic properties of acetylcholinesterase from human erythrocytes under acetylcholine hydrolysis, on sensitivity of acetylcholinesterase to specific phosphoorganic inhibitors and eserine, and on the mobility and isoenyme spectrum under analytical electrophoresis in polyacrylamide gel is investigated. Triton X-100, independently on its concentration within 0.05-1.0%, slightly changes V and [S]opt values and increases Km value in 2-3 times. The inhibitory effect of Triton X-100 is mainly competitive, 0.5% Triton X-100 decreases bimolecular constant (kII) of the interaction of acetylcholinesterase with phosphoorganic inhibitor and eserine in 2.5-4 times. In the presence of phosphoorganic inhibitor, kII sharply decreased when 0.02% Triton X-100 was added, and then it did not change under the increase of Triton X-100 concentration up to 1.0%. On the basis of these data, an analytical method of estimating Triton X-100 content in protein solution is proposed. The introduction of 0.1% Triton X-100 into polyacrylamide gel results in considerable quantitative redistribution of acetylcholinesterase isoenzyme fractions and in the change of the mobility of one fraction under electrophoresis.  相似文献   

15.
Microsomal membranes were solubilized by incubation with lysolecithin which caused considerable release of galactosyl- and N-acetylglucosaminyl-transferase into a high-speed supernatant fraction. With a critical concentration of lysolecithin (2.5 mg/10 mg protein in 1 mL microsome suspension), there was a maximal binding of radioactive lysolecithin to the sediment fraction obtained after high-speed centrifugation. Increase of lysolecithin concentration (above 2.5 mg/mL) in the incubation mixture caused a progressive release of the enzymes into the supernatant fraction. Lysolecithin binding to the membrane was greatly inhibited by 1 M NaCl, and high salt concentration also inactivated galactosyltransferase in the sediment, suggesting an electrostatic interaction between lysolecithin and membrane enzyme. In contrast, high NaCl concentration had no inhibitory effect on the enzyme activity in the sediment when the fraction was prepared by treatment with Triton X-100. Lysolecithin-treated microsomal sediment and supernatant galactosyltransferase was inactivated by oleoyllysophosphatidic acid but not by palmitoyllysophosphatidic acid or egg yold lysophosphatidic acid. Triton X-100 treated microsomal fractions were also similarly affected by different species of lysophosphatidic acid. The results suggested a similarity of interactions of lysophosphatidic fatty acyl species with lysolecithin and Triton-treated galactosyltransferase.  相似文献   

16.
The kinetics of the interaction of rabbit skeletal muscle phosphorylase kinase with glycogen was studied by the turbidimetric method at pH 6.8 and 8.2. Binding of phosphorylase kinase by glycogen occurs only in the presence of Ca2+ and Mg2+. The initial rate of complex formation is proportional to the enzyme and polysaccharide concentration; this suggests the formation of a complex with 1:1 stoichiometry in the initial step of phosphorylase kinase binding by glycogen. The kinetic data suggest that phosphorylase kinase substrate--glycogen phosphorylase b--favors the binding of phosphorylase kinase with glycogen. This conclusion is supported by direct experiments on the influence of phosphorylase b on the interaction of phosphorylase kinase with glycogen using analytical sedimentation analysis. The kinetic curves of the formation of the complex of phosphorylase kinase with glycogen obtained in the presence of ATP are characterized by a lag period. Preincubation of phosphorylase kinase with ATP in the presence of Ca2+ and Mg2+ causes the complete disappearance of the lag period. On changing the pH from 6.8 to 8.2, the rate of phosphorylase kinase binding by glycogen is appreciably increased, and complex formation becomes possible even in the absence of Mg2+. A model of phosphorylase kinase and phosphorylase b adsorption on the surface of the glycogen particle explaining the increase in the strength of phosphorylase kinase binding with glycogen in the presence of phosphorylase b is proposed.  相似文献   

17.
Although the novel pancreatic peptide amylin has been shown to induce insulin resistance and decrease glucose uptake, the mechanism of amylin's actions is unknown. The following study evaluated the effect of amylin on glycogen metabolism in isolated soleus muscles in the presence and absence of insulin (200 microU/ml). Total glycogen, glycogen phosphorylase and glycogen synthases activities, and cAMP levels were measured. Total glycogen levels were significantly decreased by amylin (100 nM) in fed or fasted muscles under conditions of insulin stimulation. Amylin (100 nM) activated glycogen phosphorylase by as much as 100% and decreased glycogen synthase activity by over 60%, depending on the metabolic state of the muscles. These effects where comparable to those of the beta adrenergic agonist isoproterenol. A lower concentration of amylin (1 nM) did not significantly affect glycogen levels, glycogen phosphorylase, or glycogen synthase activity. Cyclic AMP levels were increased two-fold by isoproterenol but were unaffected by amylin. In conclusion, amylin induces glycogenolysis by decreasing glycogen synthesis and increasing breakdown. The effect of amylin on enzyme activity is consistent with a phosphorylation-dependent mechanism. It is likely that these events are mediated via a cAMP independent protein kinase.  相似文献   

18.
Virus inactivation by solvent/detergent treatment using 0.3% tri-n-butyl phosphate and 1% Triton X-100 in the high purity factor VIII concentrate Replenate((R)) has been investigated. A wide range of model enveloped viruses were confirmed to be inactivated by >4 to >6log after 30min at 22 degrees C under standard conditions. Using Sindbis as a representative enveloped virus, the effect of various parameters on the inactivation process was tested. Virus inactivation was confirmed to be effective in different batches of product and was not influenced by changing the process conditions with regard to protein and salt concentration or pH. Virus inactivation was effective even at a temperature as low as 4-5 degrees C. Although solvent/detergent concentration was the most critical parameter, a concentration as low as 0.15% TnBP/0.5% Triton X-100 was still completely effective. At a lower concentration an extended incubation period was required. These studies demonstrate the robustness of this solvent/detergent procedure based on Triton X-100 and allow suitable process limits to be set for this manufacturing step.  相似文献   

19.
Receptors for thyrotropin-releasing hormone were solubilized by Triton X-100. Membrane fractions from GH3 pituitary tumor cells were incubated with thyrotropin-releasing hormone in order to saturate specific receptor sites before the addition of detergent. The amount of protein-bound hormone solubilized by Triton X-100 was proportional to the fractional saturation of specific membrane receptors. Increasing detergent: protein ratios from 0.5 to 20 led to a progressive loss of hormone · receptor complex from membrane fractions with a concomitant increase in soluble protein-bound hormone. The soluble hormone · receptor complex was not retained by 0.22 μm filters and remained soluble after ultracentrifugation. Following incubation with high (2.5–10%) concentration of Triton X-100 and other non-ionic detergents, or following repeated detergent extraction, at least 18% of specifically bound thyrotropin-releasing hormone remained associated with particulate material. Unlike the hormone receptor complex, the free hormone receptor was inactivated by Triton X-100. A 50% loss of binding activity was obtained with 0.01% Triton X-100, corresponding to a detergent: protein ratio of 0.033.The hormone · receptor complex was included in Sepharose 6B and exhibited an apparent Stokes radius of 46 Å in buffers containing Triton X-100. The complex aggregated in detergent-free buffers. Soluble hormone receptors were separated from excess detergent and thyrotropin-releasing hormone by chromatography on DEAE-cellulose. Thyrotropin-releasing hormone dissociated from soluble receptors with a half-time of 120 min at 0°c, while the membrane hormone · receptor complex was stable for up to 5 h at 0°C.  相似文献   

20.
A mixed micellar assay for the binding of phorbol-esters to protein kinase C was developed to investigate the specificity and stoichiometry of phospholipid cofactor dependence and oligomeric state of protein kinase C (Ca2+/phospholipid-dependent enzyme) required for phorbol ester binding. [3H]Phorbol dibutyrate was bound to protein kinase C in the presence of Triton X-100 mixed micelles containing 20 mol % phosphatidylserine (PS) in a calcium-dependent manner with a Kd of 5 X 10(-9) M. The [3H]phorbol dibutyrate X protein kinase C . Triton X-100 . PS mixed micellar complex eluted on a Sephacryl S-200 molecular sieve at an Mr of approximately 200,000; this demonstrates that monomeric protein kinase C binds phorbol dibutyrate. This conclusion was supported by molecular sieve chromatography of a similar complex where Triton X-100 was replaced with beta-octylglucoside. Phorbol dibutyrate activation of protein kinase C in Triton X-100/PS mixed micelles occurred and was dependent on calcium. The PS dependence of both phorbol ester activation and binding to protein kinase C lagged initially and then was highly cooperative. The minimal mole per cent PS required was strongly dependent on the concentration of phorbol dibutyrate or phorbol myristic acetate employed. Even at the highest concentration of phorbol ester tested, a minimum of 3 mol % PS was required; this indicates that approximately four molecules of PS are required. [3H]Phorbol dibutyrate binding was independent of micelle number at 20 mol % PS. The phospholipid dependencies of phorbol ester binding and activation were similar, with PS being the most effective; anionic phospholipids (cardiolipin, phosphatidic acid, and phosphatidylglycerol were less effective, whereas phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin did not support binding or activation. sn-1,2-Dioleoylglycerol displaced [3H]phorbol dibutyrate quantitatively and competitively. The data are discussed in relation to a molecular model of protein kinase C activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号