首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Phthalonic acid is a powerful inhibitor of alpha-oxoglutarate transport in mitochondria. This conclusion is based on the following observations: 1. Phthalonic acid inhibits the oxidation of alpha-oxoglutarate but has no effect on the oxidation of glutamate or cis-aconitate. 2. With arsenite present, phthalonic acid inhibits the oxidation of glutamate plus malate and of cis-aconitate plus malate. Under these conditions alpha-oxoglutarate accumulates inside the mitochondria. With glutamate plus malate as substrates the inhibition is competitive with malate with a Ki value of 20 muM. 3. Phthalonic acid inhibits the oxidation of intramitochondrial NAD(P)H by alpha-oxoglutarate plus ammonia. The inhibition is competitive with respect to alpha-oxoglutarate with a Ki of 30 muM. 4. Phthalonic acid inhibits the exchange between extramitochondrial alpha-oxoglutarate and intramitochondrial malate.  相似文献   

2.
The ability of aspartate transcarbamylase from Escherichia coli to catalyze carbamylation of amino acids other than the natural substrate, L-aspartate, was examined. Cysteine, cysteate, cysteinesulfinate, and 3-nitroalanine showed kcat values at pH 7 of 0.16, 0.58, 5.2, and 62 s-1, respectively, while kcat with aspartate was 320 s-1. In a parallel study, competitive inhibition constants of 3-nitropropionate, 3-mercaptopropionate, 3-sulfopropionate, and 3-sulfinopropionate were found to be high, about 0.1 M, compared with that of succinate, 0.56 mM. Although cysteinesulfinate had low activity as a substrate, the pH dependences of kcat and kcat/Km in H2O and D2O observed with the compound closely paralleled those of aspartate. The results of these studies suggest that substrate specificity and reactivity are achieved in part by a strong, highly specific interaction of one or more active site residues with the beta-carboxylate of L-aspartate. Unlike the sigmoidal kinetics found with aspartate, saturation of native aspartate transcarbamylase by cysteine sulfinate showed a lack of cooperativity, even under conditions of activation of the reaction by ATP and inhibition by CTP. The cysteinesulfinate reaction was increased 9-fold by the bisubstrate analog N-phosphonacetyl-L-aspartate. These results were interpreted in terms of an inability of cysteinesulfinate to cause the allosteric conformational change promoted by aspartate.  相似文献   

3.
Glutamate and aspartate transport in rat brain mitochondria   总被引:11,自引:4,他引:7       下载免费PDF全文
1. Rat brain mitochondria did not swell in iso-osmotic solutions of ammonium or potassium (plus valinomycin) glutamate or aspartate, with or without addition of uncouplers. 2. Glutamate was able to reduce intramitochondrial NAD(P)(+); aspartate was able to cause partial re-oxidation. 3. These effects were inhibited by threo-hydroxy-aspartate in whole but not in lysed mitochondria. 4. The existence of a ;malate-aspartate shuttle' for the oxidation of extramitochondrial NADH was demonstrated. This shuttle requires the net exchange of glutamate for aspartate across the mitochondrial membrane. 5. Extramitochondrial glutamate did not inhibit intramitochondrial glutaminase under conditions in which the inhibition in lysed mitochondria was virtually complete. 6. The glutaminase activity of these mitochondria was not energy-dependent. 7. We conclude that these mitochondria do not possess a glutamate-hydroxyl antiporter similar to that of liver mitochondria nor a glutamate-glutamine antiporter similar to that of pig kidney mitochondria, but that they do possess a glutamate-aspartate antiporter.  相似文献   

4.
5.
Using analytical subcellular fractionation techniques, 12% of the total L-alanine aminotransferase activity and 26% of the total L-aspartate aminotransferase activity was localized in enterocyte mitochondria. Alanine and aspartate were products from the oxidation of glutamine and glutamate by enterocyte mitochondria. At low concentrations, malate stimulated aspartate synthesis but was inhibitory at higher concentrations. The malate inhibition of aspartate synthesis, which increased in the presence of pyruvate, was accompanied by an increase in alanine synthesis. With glutamine as substrate in the presence of pyruvate and malate, alanine synthesis was increased by 127% on addition of purified L-alanine aminotransferase, in spite of large amounts of glutamate generated. It was concluded that when pyruvate is available the important route for glutamine or glutamate oxidation by transamination was via L-alanine:2-oxoglutarate aminotransferase and not via L-aspartate:2-oxoglutarate aminotransferase. Results suggested that mitochondria may account for 50% of alanine production from glutamine in the enterocyte despite the relatively low activity of L-alanine aminotransferase therein.  相似文献   

6.
Multiple forms of rat liver cysteinesulfinate decarboxylase   总被引:1,自引:0,他引:1  
Cysteinesulfinate decarboxylase, purified from male rat livers and homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is resolved into five distinct enzyme species (isoforms) by gel isoelectric focusing. Since the isoforms are present in fresh liver homogenates and do not arise by proteolysis, the enzyme is apparently heterogeneous in vivo. Although female rat livers contain only 5% of the cysteinesulfinate decarboxylase activity of male livers, immunological and enzymatic studies indicate that the distribution of isoforms is similar in both sexes. Rat brain and kidney also contain multiple isoforms which are cross-reactive with polyclonal antibodies prepared to the liver enzyme. The enzyme exhibits a protomer Mr of 53,000, and the native enzyme is shown by cross-linking studies to be dimeric. Purified enzyme contains no carbohydrate or phosphate and does not bind excess pyridoxal 5'-phosphate. Two pools of enzyme activity are resolved preparatively by chromatofocusing chromatography and have been examined with respect to substrate and inhibitor specificity. Both pools are most active toward L-cysteinesulfinate and L-cysteinesulfonate. Aspartate, homocysteinesulfinate, homocysteinesulfonate, 2-amino-3-phosphonopropionate, and glutamate are decarboxylated at rates less than 1% of that observed with L-cysteinesulfinate; D-cysteinesulfinate is not decarboxylated but is an effective inhibitor. The enzyme isoforms cannot be distinguished on the basis of substrate affinity or specificity. The enzyme is irreversibly inactivated by the mechanism-based inhibitors beta-methylene-DL-aspartate and beta-ethylidene-DL-aspartate. beta-Ethylideneaspartate, in contrast to the beta-methylene derivative, does not inhibit aspartate aminotransferase, an enzyme also important in cysteinesulfinate metabolism. beta-Ethylidene aspartate or related beta-ethylidene compounds may be useful in selectively altering cysteinesulfinate metabolism in vivo.  相似文献   

7.
Synaptosomes isolated from rat brain accumulated cysteic acid by a high-affinity transport system (Km = 12.3 +/- 2.1 microM; Vmax = 2.5 nmol mg protein-1 min-1). This uptake was competitively inhibited by aspartate (Ki = 13.3 +/- 1.8 microM) and cysteine sulfinate (Ki = 13.3 +/- 2.3 microM). Addition of extrasynaptosomal cysteate, aspartate, or cysteine sulfinate to synaptosomes loaded with [35S]cysteate induced rapid efflux of the cysteate. This efflux occurred via stoichiometric exchange of amino acids with half-maximal rates at 5.0 +/- 1.1 microM aspartate or 8.0 +/- 1.3 microM cysteine sulfinate. Conversely, added extrasynaptosomal cysteate exchanged for endogenous aspartate and glutamate with half-maximal rates at 5.0 +/- 0.4 microM cysteate. In the steady state after maximal accumulation of cysteate, the intrasynaptosomal cysteate concentrations exceeded the extrasynaptosomal concentrations by up to 10,000-fold. The measured concentration ratios were the same, within experimental error, as those for aspartate and glutamate. Depolarization, with either high [K+] or veratridine, of the plasma membranes of synaptosomes loaded with cysteate caused parallel release of cysteate, aspartate, and glutamate. It is concluded that neurons transport cysteate, cysteine sulfinate, aspartate, and glutamate with the same transport system. This transport system catalyzes homoexchange and heteroexchange as well as net uptake and release of all these amino acids.  相似文献   

8.
L-Cysteinesulfonate (L-cysteate) is present in plasma, urine, and tissues in concentrations comparable to that of L-cysteinesulfinate, the primary oxidative metabolite of L-cysteine. Although cysteinesulfonate is known to be decarboxylated to taurine by cysteinesulfinate decarboxylase, the occurrence and importance of other metabolisms has not been examined. The present studies indicate that cysteinesulfonate partitions in vivo between decarboxylation and transamination; the latter reaction is catalyzed by aspartate aminotransferase and yields beta-sulfopyruvate. Whereas beta-sulfinylpyruvate, the product of cysteinesulfinate transamination, decomposes spontaneously, beta-sulfopyruvate is stable and is reduced by malate dehydrogenase to beta-sulfolactate. When L-[1-14C]cysteinesulfonate is given to mice, 60-75% is decarboxylated to taurine and about 25% is excreted in the urine as beta-sulfolactate. beta-Sulfo[1-14C] pyruvate is found to partition about equally between beta-sulfolactate and cysteinesulfonate formation; greater than 90% of the latter is decarboxylated. Parenterally administered beta-sulfo[1-14C]lactate is mostly excreted in the urine, but 12% is metabolized via beta-sulfopyruvate and cysteinesulfonate to 14CO2 and taurine. beta-Sulfopyruvate is not excreted, and only traces of sulfoacetate, perhaps formed by oxidative decarboxylation, are detected. These studies establish that cysteinesulfonate, beta-sulfopyruvate, and beta-sulfolactate are reversibly interconverted in vivo. Since only cysteinesulfonate is directly metabolized to CO2, the rate of 14CO2 formation from L-[1-14C]cysteinesulfonate is a valid measure of total cysteinesulfinate decarboxylase activity in vivo; use of this assay permits inhibitor effects to be accurately determined in intact mice. Thus, whereas in vitro assays indicate that beta-methyleneaspartate inhibits brain, liver, and kidney cysteinesulfinate decarboxylase by 0, greater than 60, and 90%, respectively, in vivo studies with L-[1-14C]cysteinesulfonate show net metabolic inhibition is about 40%.  相似文献   

9.
1. After hypotonic treatment spermatozoa have metabolic characteristics of mitochondria isolated from other cells. Ejaculated boar spermatozoa treated in this way can oxidise external NADH via both a lactate-pyruvate shuttle and a malate-aspartate cycle; this oxidation is coupled to the phosphorylation of ADP. 2. The dicarboxylate transport inhibitors butylmalonate, phenylsuccinate and bathophenanthroline sulphonate inhibit NADH oxidation dependent on added malate, glutamate and aspartate. alpha-Cyanocinnamate, a strong inhibitor of pyruvate transport, inhibits lactate-dependent NADH oxidation. 3. NADH oxidation dependent on malate, glutamate and aspartate is inhibited by uncoupling agents, but lactate-dependent NADH oxidation is stimulated. 4. Lactate-dependent NADH oxidation is inhibited by oxamate, an inhibitor of lactate dehydrogenase. Aminooxyacetate, an aminotransferase inhibitor, inhibits glutamate, malate and aspartate-dependent NADH oxidation. 5. Hypotonically-treated spermatozoa retain radioactivity after incubation with L-[U-14C]malate, [1,5-14C]citrate or [2-14C]malonate. Exchanges of retained radioactivity with various substrates indicate that dicarboxylate and tricarboxylate exchange carriers exist in the mitochondrial membrane.  相似文献   

10.
Summary Mitochondria prepared from rainbow trout liver consistently display high respiratory control and ADP/O ratios. These appear to possess a complete Krebs cycle, since pyruvate, palmitoyll-carnitine, citrate, and various Krebs cycle intermediates can all be oxidized. Rapid oxidation of pyruvate and palmitoyll-carnitine requires the pressence of malate. Oxidation of palmitoyll-carnitine appears to inhibit pyruvate oxidation. Malate stimulates -ketoglutarate oxidation while aspartate inhibits glutamate oxidation, indicating the presence of malate--ketoglutarate and glutamate-aspartate carriers. These properties are compared with those of liver mitochondria from other species of fish.  相似文献   

11.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

12.
Binding experiments indicate that mitochondrial aspartate aminotransferase can associate with the alpha-ketoglutarate dehydrogenase complex and that mitochondrial malate dehydrogenase can associate with this binary complex to form a ternary complex. Formation of this ternary complex enables low levels of the alpha-ketoglutarate dehydrogenase complex, in the presence of the aminotransferase, to reverse inhibition of malate oxidation by glutamate. Thus, glutamate can react with the aminotransferase in this complex without glutamate inhibiting production of oxalacetate by the malate dehydrogenase in the complex. The conversion of glutamate to alpha-ketoglutarate could also be facilitated because in the trienzyme complex, oxalacetate might be directly transferred from malate dehydrogenase to the aminotransferase. In addition, association of malate dehydrogenase with these other two enzymes enhances malate dehydrogenase activity due to a marked decrease in the Km of malate. The potential ability of the aminotransferase to transfer directly alpha-ketoglutarate to the alpha-ketoglutarate dehydrogenase complex in this multienzyme system plus the ability of succinyl-CoA, a product of this transfer, to inhibit citrate synthase could play a role in preventing alpha-ketoglutarate and citrate from accumulating in high levels. This would maintain the catalytic activity of the multienzyme system because alpha-ketoglutarate and citrate allosterically inhibit malate dehydrogenase and dissociate this enzyme from the multienzyme system. In addition, citrate also competitively inhibits fumarase. Consequently, when the levels of alpha-ketoglutarate and citrate are high and the multienzyme system is not required to convert glutamate to alpha-ketoglutarate, it is inactive. However, control by citrate would be expected to be absent in rapidly dividing tumors which characteristically have low mitochondrial levels of citrate.  相似文献   

13.
The possible existence of a malonate-sensitive dicarboxylate-mediated electron shuttle between microsomal NAD-linked fatty acid α-oxidation and the mitochondrial electron transport chain in uncoupled fresh potato slices was investigated. Uncoupled slice respiration is inhibited by benzylmalonate and butylmalonate, inhibitors of dicarboxylate transport into mitochondria. Uncoupled slice respiration is also inhibited by rotenone, an indication of intramitochondrial NADH oxidation. Since fatty acid α-oxidation per se is rotenone insensitive, rotenone and benzylmalonate inhibition of the oxidation of carboxyl-labeled myristate in slices points to a dicarboxylic acid shuttle linking microsomal fatty acid a-oxidation with intramitochondrial NADH dehydrogenase.
Malonute inhibits both respiration and 14CO2, release from carboxyl-labeled myristate in fresh uncoupled slices, as do inhibitors of dicarboxylate transport. Mitochondrial studies show that malonate inhibits malate oxidation but not malate dehydrogenase per se. Furthermore, malonate inhibits malate transport more severely than malate oxidation. Accordingly, mulonate inhibition of uncoupled slice respiration in the absence of tricarboxylic acid cycle activity is attributed to its interference with mitochondrial malate transport, and its consequent curtailment of a putative malate-OAA shuttle linked to cytosolic NAD-mediated fatty acid α-oxidation.  相似文献   

14.
During glycine oxidation by spinach leaf mitochondria, oxygen consumption showed a strong and transient inhibition upon addition of oxaloacetate or aspartate plus α-ketoglutarate. During the course of the inhibition, aspartate and α-ketoglutarate were stoichiometrically transformed into malate and glutamate.  相似文献   

15.
The effect of acute hypoxia on adenine nucleotides, glutamate, aspartate, alanine and respiration of heart mitochondria was studied in rats. The losses of intramitochondrial adenine nucleotides (ATP+ADP+AMP) during hypoxia were related to depression of state 3 respiration supported by glutamate and malate, as well as decrease in uncoupled respiration. Hypoxia had less prominent effect on succinate-dependent state 3 respiration. Non-phosphorylating (state 4) respiratory rates and ADP/O ratios were slightly affected by oxygen deprivation. Glutamate fall in tissue and mitochondria of hypoxic hearts was concomitant with significant increase in tissue alanine and mitochondrial aspartate. The losses of intramitochondrial ATP and respiratory activity with NAD-dependent substrates during hypoxia were related to a decrease in mitochondrial glutamate. The results suggest that hypoxia-induced impairment of complex I of respiratory chain and a loss of glutamate from the matrix may limit energy-producing capacity of heart mitochondria.  相似文献   

16.
1H-NMR was used to follow the aspartate aminotransferase-catalysed exchange of the alpha-protons of aspartate and glutamate. The effect of the concentrations of both the amino acids and the cognate keto acids on exchange rates was determined for wild-type and the R386A and R292V mutant forms of aspartate aminotransferase. The wild-type enzyme is found to be highly stereospecific for the exchange of the alpha-protons of L-aspartate and L-glutamate. The R386A mutation which removes the interaction of Arg-386 with the alpha-carboxylate group of aspartate causes an approximately 10,000-fold decrease in the first order exchange rate of the alpha-proton of L-aspartate. The R292V mutation which removes the interaction of Arg-292 with the beta-carboxylate group of L-aspartate and the gamma-carboxylate group of L-glutamate causes even larger decreases of 25,000- and 100,000-fold in the first order exchange rate of the alpha-proton of L-aspartate and L-glutamate respectively. Apparently both Arg-386 and Arg-292 must be present for optimal catalysis of the exchange of the alpha-protons of L-aspartate and L-glutamate, perhaps because the interaction of both these residues with the substrate is essential for inducing the closed conformation of the active site.  相似文献   

17.
Oxidative decarboxylation of [1-14C]pyruvate was studied in primary cultures of neurons and of astrocytes. The rate of this process, which is a measure of carbon flow into the tricarboxylic acid (TCA) cycle and which is inhibited by its end product, acetyl CoA, was determined under conditions which would either elevate or reduce the components of the malate-aspartate shuttle (MAS). Addition of aspartate (1 mM) was found to stimulate pyruvate decarboxylation in astrocytes whereas addition of glutamate (or glutamine) had no effect. Since aspartate is a precursor for extramitochondrial malate, and thus intramitochondrial oxaloacetate, whereas glutamate and glutamine are not, this suggests that an increase in oxaloacetate level stimulates TCA cycle activity. Conversely, a reduction of the glutamate content by 3 mM ammonia, which might reduce exchange between glutamate and aspartate across the mitochondrial membrane, suppressed pyruvate decarboxylation. This effect was abolished by addition of glutamate or glutamine or exposure to methionine sulfoximine (MSO). These findings suggest that impairment of MAS activity by removal of MAS constituents decreases TCA cycle activity whereas replenishment of these compounds restores the activity of the TCA cycle. No corresponding effects were observed in neurons.  相似文献   

18.
1-methyl-4-phenylpyridine (MPP+), a major product of the oxidation of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been postulated to be the compound responsible for destruction of nigrostriatal neurons in man and primates and for inhibition of mitochondrial NADH oxidation which leads to cell death. We have confirmed that 0.5 mM MPP+ inhibits extensively the oxidation of NAD+-linked substrates in intact liver mitochondria in State 3 and after uncoupling, while succinate oxidation is unaffected. However, in inverted mitochondria, inner membrane preparations, and Complex I NADH oxidation is not significantly affected at this concentration of MPP+, nor are malate and glutamate dehydrogenases or the carriers of these substrates inhibited. We report here the discovery of an uptake system for MPP+ in mitochondria which is greatly potentiated by the presence of malate plus glutamate and inhibited by respiratory inhibitors, suggesting an energy-dependent carrier. A 40-fold concentration of MPP+ in the mitochondria occurs in ten minutes. This might account for the inhibition of malate and glutamate oxidation in intact mitochondria.  相似文献   

19.
Propionate inhibits citrullinogenesis when succinate (plus rotenone) or glutamate are the oxidizable substrates used. Propionate decreases the intramitochondrial concentration of carbamylphosphate by decreasing the ATP content. When the energy supply for citrullinogenesis is provided by an influx of exogenous ATP, propionate is no longer an inhibitor. Pyruvate inhibits citrullinogenesis with glutamate but not with succinate (plus rotenone) as oxidizable substrates. Propionate and pyruvate deplete mitochondrial ATP but probably by different mechanisms.  相似文献   

20.
Aspartate racemase from Streptococcus thermophilus contains no pyridoxal 5'-phosphate or other cofactors such as FAD, NAD+, and metal ions. It was affected by neither carbonyl reagents such as hydroxylamine nor sodium borohydride but was strongly inhibited by iodoacetamide and other thiol reagents. Aspartate, cysteate, and cysteine sulfinate were the only substrates. The Km values for L- and D-aspartate were 35 and 8.7 mM, respectively. The enzyme catalyzed the exchange of alpha-hydrogen of the substrate with the solvent hydrogen. Racemization of L-aspartate in 2H2O showed an overshooting in the optical rotation of aspartate before the substrate was fully racemized. This shows that the removal of alpha-hydrogen of the substrate is at least partially rate-determining. When L- or D-aspartate was incubated with aspartate racemase in tritiated water, tritium was incorporated preferentially into the product enantiomer. The results strongly suggest that aspartate racemase contains two hydrogen acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号