首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-embryogenic cells (NEC) and embryogenc cells (EC) were separated from cell clusters derived from the hypocotyl segments of celery seedlings, which had been suspension-cultured in MS medium supplemented with 105 M 2,4-D. The EC formed globular embryos in medium without 2,4-D. The globular embryo developed through heart-shaped, torpedo to cotyledonary embryos within 10 days. The EC and developing embryos were fractionated into symplastic [MeOH, hot water (HW), starch (S)] and apoplastic [pectin, hemicellulose, TFA (trifluoroacetic acid)-soluble and cellulose] fractions. The EC contained lower levels of sugar in the MeOH fraction and higher levels of starch than NEC. In the apoplastic fractions, there were no differences of total sugar amounts between NEC and EC. Cellulose contents were about 10% of the wall polysaccharides. During somatic embryogenesis, total sugar contents of the MeOH and HW fractions increased till the heart-shaped embryo stage, and then decreased during the torpedo and cotyledonary embryo stages. The sugar contents of the starch, pectin, TFA-soluble, and cellulose fractions did not change during the stages mentioned above. However, the hemicellulose substances remarkably increased during embryogenesis, and then decreased as the development proceeded. The neutral sugar components of the hemicellulosic fractions were analyzed. Arabinose increased markedly in EC to the globular embryo stage, but decreased as the development proceeded. Galactose increased only at the torpedo and cotyledonary embryo stages. Xylose was present at lower levels in all stages of embryogenesis than in the differentiated hypocotyl cell walls. These results suggest that there was a high turnover of arabinogalactan polysaccharides during embryogenesis, and that xylan accumulated in the cell walls of differentiated cells  相似文献   

2.
The Myrothamnus flabellifolius leaf cell wall and its response to desiccation were investigated using electron microscopic, biochemical, and immunocytochemical techniques. Electron microscopy revealed desiccation-induced cell wall folding in the majority of mesophyll and epidermal cells. Thick-walled vascular tissue and sclerenchymous ribs did not fold and supported the surrounding tissue, thereby limiting the extent of leaf shrinkage and allowing leaf morphology to be rapidly regained upon rehydration. Isolated cell walls from hydrated and desiccated M. flabellifolius leaves were fractionated into their constituent polymers and the resulting fractions were analyzed for monosaccharide content. Significant differences between hydrated and desiccated states were observed in the water-soluble buffer extract, pectin fractions, and the arabinogalactan protein-rich extract. A marked increase in galacturonic acid was found in the alkali-insoluble pectic fraction. Xyloglucan structure was analyzed and shown to be of the standard dicotyledonous pattern. Immunocytochemical analysis determined the cellular location of the various epitopes associated with cell wall components, including pectin, xyloglucan, and arabinogalactan proteins, in hydrated and desiccated leaf tissue. The most striking observation was a constitutively present high concentration of arabinose, which was associated with pectin, presumably in the form of arabinan polymers. We propose that the arabinan-rich leaf cell wall of M. flabellifolius possesses the necessary structural properties to be able to undergo repeated periods of desiccation and rehydration.  相似文献   

3.
4.
A. Peat  N. Powell  M. Potts 《Protoplasma》1988,146(2-3):72-80
Summary Vegetative cells and heterocysts of the filamentous desiccation-tolerant cyanobacteriumNostoc commune HUN retain their ultrastructural organisation and the integrity of their intra- and extracellular membranes after two years of desiccation and subsequent rehydration. Immunogold-labelling of thin sections demonstrated the presence of NifH (Fe protein of nitrogenase) in vegetative cells and heterocysts within five minutes of the rehydration of dried colonies. Immunogold label accumulated in discrete areas vegetative cells within 5 minutes of the rewetting of cells, and after 30 minutes a conspicuous association of NifH protein with heterocyst ribosomes was detected. After longer periods of rehydration, the deposition of gold particles became more random within both cell types but occurred with a greater frequency in heterocysts. Up to 24 hours after the rewetting of cells, two morphologically-distinct forms of heterocyst could be discerned. NifH protein was detected through Western blotting (subunit Mr=33,800) in protein extracts from samples ofNostoc commune, collected in different parts of the world and including some which had been desiccated for periods of up to 10 years. The results are discussed in relation to the sequential recovery of metabolic functions, particularly nitrogen fixation, which occurs upon the rehydration of cells after their prolonged storage in the air-dry state.  相似文献   

5.
Plant virus-encoded movement proteins promote viral spread between plant cells via plasmodesmata. The movement is assumed to require a plasmodesmata targeting signal to interact with still unidentified host factors presumably located on plasmodesmata and cell walls. The present work indicates that a ubiquitous cell wall-associated plant enzyme pectin methylesterase of Nicotiana tabacum L. specifically binds to the movement protein encoded by tobacco mosaic virus. We also show that pectin methylesterase is an RNA binding protein. These data suggest that pectin methylesterase is a host cell receptor involved in cell-to-cell movement of tobacco mosaic virus.  相似文献   

6.
Here we present a brief review of the reports concerning proteome modifications under the influence of salicylic acid, which is one of the major mediators of both local and systemic immunity. We describe also the results of our own studies of the salicylate-induced changes in proteomes of pea leaves and roots. Fifteen salicylate-inducible proteins, which were previously unknown, have been identified. Unlike the roots, leaves accumulated some chloroplast proteins and enzymes capable of degrading the pathogen cell walls. In the roots, salicylic acid increased the content of enzymes, improving the resistance of plant cells themselves, and promoted the disappearance of reductase of oxophytodienic acid. The latter could lead to inhibition of jasmonic acid synthesis and stimulation of local immunity. High (apoptotic) concentration of salicylic acid intensified synthesis of root proteins involved in the formation of heteroprotein complexes, which play an important role in the functioning of the signaling system, DNA synthesis and repair, and protein synthesis, refolding, and proteolysis.  相似文献   

7.
以2个荞麦(Fygopyrum esculentum Moench)基因型‘江西荞麦’(耐性)和‘内蒙荞麦’(敏感)为材料,采用悬空培养(保持边缘细胞附着于根尖和去除根尖边缘细胞),研究边缘细胞对根尖铝毒的防护效应以及对细胞壁多糖组分的影响。结果表明,铝毒抑制荞麦根系伸长,导致根尖Al积累。去除边缘细胞的根伸长抑制率和根尖Al含量高于保留边缘细胞的根。去除边缘细胞使江西荞麦和内蒙荞麦根尖的酸性磷酸酶(APA)活性显著升高,前者在铝毒下增幅更大。同时,铝毒胁迫下去除边缘细胞的根尖果胶甲酯酶(PME)活性和细胞壁果胶、半纤维素1、半纤维素2含量显著高于保留边缘细胞的酶活性和细胞壁多糖含量。表明边缘细胞对荞麦根尖的防护效应,与其阻止Al的吸收,降低根尖细胞壁多糖含量及提高酸性磷酸酶活性有关,以此缓解Al对根伸长的抑制。  相似文献   

8.
Lygodium japonicum fern accumulates copper in the cell wall pectin   总被引:2,自引:0,他引:2  
The present work reports the results of a study on the growth kinetics and characterization of matrix polysaccharides in the cell walls of Lygodium japonicum prothallium grown in the presence of copper (Cu). When the prothallium was cultured in the media containing 0.2 mM or 0.4 mM CuSO(4), it showed a rapid accumulation of Cu with a maximum uptake of Cu measured in the cells up to 20 d of culture. The maximum rate of Cu uptake into the prothallium was greater for 0.4 mM Cu-treated cells (17.2 micromol g(-1) DW) than for 0.2 mM Cu-treated cells (3.2 micromol g(-1) DW). Cell walls were isolated from both untreated control and Cu-treated cells and then extracted sequentially with cyclohexane-trans-1,2-diaminetetra-acetate (CDTA), Na(2)CO(3), 1 M KOH, and 4 M KOH. The amount of pectin solubilized from 0.4 mM Cu-treated cell walls decreased to 53% of its level in the control, whereas the amount of hemicellulose solubilized from the Cu-treated cell walls represented 82% of that from control cell walls. When the polysaccharides were fractionated by anion-exchange chromatography into four carbohydrate components, considerable increases in fractions PI-3 and PII-3 eluted with 0.5 M NaCl were observed in CDTA-soluble (PI) and Na(2)CO(3)-soluble (PII) pectic polymers from Cu-treated cell walls. Fractions PI-3 and PII-3 were composed predominantly of uronic acid (more than 71% of total sugars). Approximately 66% of Cu within the cell walls was released from the 0.4 mM Cu-treated cells with the endo-pectate-lyase treatment, suggesting that most of the Cu that accumulated into the Lygodium prothallium is tightly bound to the homogalacturonan of the cell wall pectin.  相似文献   

9.
10.
Jie Xiong  Lingyao An  Han Lu  Cheng Zhu 《Planta》2009,230(4):755-765
To study the mechanisms of exogenous NO contribution to alleviate the cadmium (Cd) toxicity in rice (Oryza sativa), rice plantlets subjected to 0.2-mM CdCl2 exposure were treated with different concentrations of sodium nitroprusside (SNP, a NO donor), and Cd toxicity was evaluated by the decreases in plant length, biomass production and chlorophyll content. The results indicated that 0.1 mM SNP alleviated Cd toxicity most obviously. Atomic absorption spectrometry and fluorescence localization showed that treatment with 0.1 mM SNP decreased Cd accumulation in both cell walls and soluble fraction of leaves, although treatment with 0.1 mM SNP increased Cd accumulation in the cell wall of rice roots obviously. Treatment with 0.1 mM SNP in nutrient solution had little effect on the transpiration rate of rice leaves, but this treatment increased pectin and hemicellulose content and decreased cellulose content significantly in the cell walls of rice roots. Based on these results, we conclude that decreased distribution of Cd in the soluble fraction of leaves and roots and increased distribution of Cd in the cell walls of roots are responsible for the NO-induced increase of Cd tolerance in rice. It seems that exogenous NO enhances Cd tolerance of rice by increasing pectin and hemicellulose content in the cell wall of roots, increasing Cd accumulation in root cell wall and decreasing Cd accumulation in soluble fraction of leaves.  相似文献   

11.
Tobacco cells adapted to grow in high concentrations of NaCl exhibit a drastically altered growth physiology that results in cells whose fully expanded volume is only one-fifth to one-eighth those of unadapted cells. Comparison between NaCl-adapted and unadapted tobacco cells provides an opportunity to evaluate current concepts of the structural and mechanical determinants of cell wall expansion. Both biochemical studies of pectic polymers and the ultrastructural localization of pectic epitopes at three specific phases of cell culture, maximal cell division, maximal elongation, and stationary phase are reported here. One-half of the galactosyluronic acid units in wall polymers of NaCl-adapted cells are esterified throughout the culture period, while wall polymers of unadapted cells show a rise in esterified polygalacturonic acid from 50 to 80% during elongation and then a decrease to 70% at stationary phase. Methyl esters account for only a proportion of the total esterified polygalacturonic acid at any stage in both unadapted and NaCl-adapted cell walls. Using monoclonal antibodies, we show differences in the localization of relatively methyl-esterified and unesterified pectic epitopes at different stages of growth and corroborate the chemical determinations. Fourier transform infrared (FTIR) microspectroscopy of representative walls of both NaCl-adapted and unadapted cells confirms, at the single cell wall level, that results obtained from chemical analysis of bulk samples are applicable to the entire cell population. FTIR microspectroscopy also reveals an increase in wall protein in the walls of adapted cells. Images obtained by the fast-freeze, deep-etch, rotary-shadowed replica technique show clearly different cell wall architectures in NaCl-adapted compared with unadapted cells; walls of elongating unadapted cells contain long, thin fibres that show a net orientation with respect to the long axis of the cell, whereas walls of adapted cells have thicker, flatter bundles of fibres with no clear net orientation. Polarized FTIR microspectroscopy indicates that, in unadapted tobacco cells during elongation, pectin molecules may be oriented within the wall in a similar manner to cellulose. Possible ways in which pectin structure and conformation may affect the behaviour of the cellulose-xyloglucan network are discussed.  相似文献   

12.
We cultured the suspension cells of kidney bean in MS media supplemented with one of five concentrations of CaCI2 [0,22,44 (control), 88, or 176 mg/L], and harvested them at the logistic (15 d) and early-stationary (30 d) phases. Cells grown at concentrations higher than 22 mg/L showed better proliferation than those at 0 mg/L The rate of proliferation also increased with higher concentrations. We fractionated the individual sugars into symplastic (EtOH and starch) and apoplastic (low-molecular pectin, high-molecular pectin, hemicellulose, and cellulose) components. Cells treated at the highest concentration (176 mg/L) exhibited the greatest amount of sugar in the EtOH and starch fraction during the logistic phase. In contrast, cells in the early stationary phase had the highest level of sugar at treatment concentrations of less than 22 mg/L. For treatment concentrations higher than 22 mg/L on Day 15, more pectin and hemicellulose was detected at greater amounts compared with those cells treated with 0 mg/L. However, at Day 30, concentrations higher than 44 mg/L induced greater amounts of pectin and hemicellulose than from the other concentrations. Cellulose was more abundant with the 0 mg/L treatment, and contents ranged from 17.4 to 25.5% in the primary cell walls over all treatment concentrations. These results indicate that CaCI2 modulates both symplastic and apoplastic sugar metabolism. Therefore, we suggest that the cell-wall structure may define the mode of polysaccharide biosynthesis during cell growth.  相似文献   

13.
A cDNA (LEPS-2) encoding a novel cell wall protein was cloned from shikonin-producing callus tissues of Lithospermum erythrorhizon by differential display between a shikonin-producing culture strain and a non-producing strain. The LEPS-2 cDNA encoded a polypeptide of 184 amino acids. The deduced amino acid sequence exhibited no significant homology with known proteins. Expression of LEPS-2 gene as well as accumulation of LEPS-2 protein was highly correlated with shikonin production in L. erythrorhizon cells in culture. In the intact plant, expression of LEPS-2 was detected only in the roots where shikonin pigments accumulated. Cell fractionation experiments and immunocytochemical analysis showed that the protein was localized in the apoplast fraction of the cell walls. The shikonin pigments were also stored on the cell walls as oil droplets. These results indicate that expression of the LEPS-2 is closely linked with shikonin biosynthesis and the LEPS-2 protein may be involved in the intra-cell wall trapping of shikonin pigments.  相似文献   

14.
In carnation shoots (Dianthus caryophyllus cv. Killer), hyperhydricity was induced in in vitro culture using a low agar concentration. Using transmission electron microscopy, cytochemical techniques and immunolocation of JIM5 and JIM7 pectin epitopes, we followed the sub-cellular modifications of cell walls in relation to peroxidase activity and hydrogen peroxide accumulation during hyperhydricity induction. Peroxidase activity revealed a significant induction of the stomatal and epidermal cells as well as of the intercellular spaces of hyperhydric leaves. Similarly, hydrogen peroxide accumulated in the epidermal cell walls and the intercellular spaces of hyperhydric leaves. Immunolocation of an epitope recognised by the JIM5 antibody revealed the main unesterified nature of the cell walls. Such an epitope was located in the epidermal cell walls as well as in the corners of cell junctions in control leaves. However, hyperhydric leaves showed a total reduction of JIM5 labelling in the corners of cell junctions and a significant reduction of the intercellular spaces and the middle lamella. Highly-methylsterified pectin, recognised by the JIM7 antibody, was present to a slight extent in cell walls in control and hyperhydric leaves. We propose that the altered anatomy observed in hyperhydric carnation leaves could be regulated by the concomitant actions of pectin methyl esterases and free radicals, modifying the structure of the pectin and polysaccharides of the cell walls.  相似文献   

15.
Hydrolysis of pectin by Saccharomycopsis fibuliger and cell growth on the products of hydrolysis by Candida utilis require different incubation conditions. A three-stage sequential culture is described in which S. fibuliger was first grown under aerobic conditions to generate cell mass. The concentration of dissolved oxygen was then reduced to promote pectolytic activity and reduce the number of viable cells in the culture. Finally culture conditions were adjusted to promote the growth of C. utilis in mixed culture with S. fibuliger. The presence of C. utilis increased the rate of pectolytic activity by S. fibuliger. A yeast product, containing 98% C. utilis cells, was obtained from the mixed culture grown on 10 g l−1 pectin. Cell yields using starch or an equal mixture of starch and pectin were similar to those reported in the Symba process, although lower cell yields were recorded using pectin alone.  相似文献   

16.
Plants enlarge mostly because the walls of certain cells enlarge, with accompanying input of wall constituents and other factors from the cytoplasm. However, the enlargement can occur without input, suggesting an uncertain relationship between cytoplasmic input and plant growth. Therefore, the role of the input was investigated by quantitatively comparing growth in isolated walls (no input) with that in living cells (input occurring). Cell walls were isolated from growing internodes of Chara corallina and filled with pressurized oil to control turgor pressure while elongation was monitored. Turgor pressure in living cells was similarly controlled and monitored by adding/removing cell solution. Temperature was varied in some experiments. At all pressures and temperatures, isolated walls displayed turgor-driven growth indistinguishable in every respect from that in living cells, except the rate decelerated in the isolated walls while the living cells grew rapidly. The growth in the isolated walls was highly responsive to temperature, in contrast to the elastic extension that has been shown to be insensitive to similar temperatures. Consequently, strong intermolecular bonds were responsible for growth and weak bonds for elastic extension. Boiling the walls gave the same results, indicating that enzyme activities were not controlling these bonds. However, pectin added to isolated walls reversed their growth deceleration and returned the rate to that in the living cells. The pectin was similar to that normally produced by the cytoplasm and deposited in the wall, suggesting that continued cytoplasmic input of pectin may play a role in sustaining turgor-driven growth in Chara.  相似文献   

17.
The cortical array of microtubules inside the cell and arabinogalactan proteins on the external surface of the cell are each implicated in plant morphogenesis. To determine whether the cortical array is influenced by arabinogalactan proteins, we first treated Arabidopsis roots with a Yariv reagent that binds arabinogalactan proteins. Cortical microtubules were markedly disorganized by 1 microM beta-D-glucosyl (active) Yariv but not by up to 10 microM beta-D-mannosyl (inactive) Yariv. This was observed for 24-h treatments in wild-type roots, fixed and stained with anti-tubulin antibodies, as well as in living roots expressing a green fluorescent protein (GFP) reporter for microtubules. Using the reporter line, microtubule disorganization was evident within 10 min of treatment with 5 microM active Yariv and extensive by 30 min. Active Yariv (5 microM) disorganized cortical microtubules after gadolinium pre-treatment, suggesting that this effect is independent of calcium influx across the plasma membrane. Similar effects on cortical microtubules, over a similar time scale, were induced by two anti-arabinogalactan-protein antibodies (JIM13 and JIM14) but not by antibodies recognizing pectin or xyloglucan epitopes. Active Yariv, JIM13, and JIM14 caused arabinogalactan proteins to aggregate rapidly, as assessed either in fixed wild-type roots or in the living cells of a line expressing a plasma membrane-anchored arabinogalactan protein from tomato fused to GFP. Finally, electron microscopy of roots prepared by high-pressure freezing showed that treatment with 5 microM active Yariv for 2 h significantly increased the distance between cortical microtubules and the plasma membrane. These findings demonstrate that cell surface arabinogalactan proteins influence the organization of cortical microtubules.  相似文献   

18.
Serpe MD  Muir AJ  Driouich A 《Planta》2002,215(3):357-370
Nonarticulated laticifers are latex-containing cells that elongate indefinitely and grow intrusively between the walls of meristematic cells. To identify biochemical mechanisms involved in the growth of nonarticulated laticifers, we have analyzed the distribution of various polysaccharides and proteoglycans in walls of meristematic cells in contact with laticifers, nonadjacent to laticifers, and in laticifer walls. In the shoot apex of Asclepias speciosa, the levels of callose and a (1-->4)-beta-galactan epitope are lower in meristematic walls in contact with laticifers than in nonadjacent walls. In contrast, we did not detect a decline in xyloglucan, homogalacturonan, and arabinogalactan-protein epitopes upon contact of meristematic cells with laticifers. Laticifer elongation is also associated with the development of a homogalacturonan-rich middle lamella between laticifers and their neighboring cells. Furthermore, laticifers lay down walls that differ from those of their surrounding cells. This is particularly evident for epitopes in rhamnogalacturonan I. A (1-->5)-alpha-arabinan epitope in this pectin is more abundant in laticifers than meristematic cells, while the opposite is observed for a (1-->4)-beta-galactan epitope. Also, different cell wall components exhibit distinct distribution patterns within laticifer walls. The (1-->5)-alpha-arabinan epitope is distributed throughout the laticifer walls while certain homogalacturonan and arabinogalactan-protein epitopes are preferentially located in particular regions of laticifer walls. Taken together, our results indicate that laticifer penetration causes changes in the walls of meristematic cells and that there are differences in wall composition within laticifer walls and between laticifers and their surrounding cells.  相似文献   

19.
Rhamnogalacturonan II (RG-II) is a region of pectin macromolecules that is present in plant primary cell walls. The RG-II region serves as the site of borate cross-linking within pectin, via which pectin macromolecules link together to form a gel. In this study, we examined whether RG-II is present in the cell plate, the precursor of primary cell walls that forms during cytokinesis. A structure inside dividing cells was labeled with a rabbit polyclonal anti-RG-II antibody and detected by immunofluorescence microscopy. An antibody against callose, a marker polysaccharide for the cell plate, also labeled the structure. In immunoelectron microscopy analyses using the anti-RG-II antibody, gold particles were distributed in electron-lucent vesicular structures that appeared to correspond to the forming cell plates in late anaphase cells. Together, these results suggest that RG-II is present in cell plates from the early phase of their assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号