首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
In several neuronal cell systems, fibroblast-derived growth factor (FGF) and nerve growth factor (NGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogen. The mechanisms responsible for these different cellular fates are unclear. We report here that although FGF, NGF, and EGF all activate mitogen-activated protein (MAP) kinase (extracellular signal-related kinase [ERK]) in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells, the activation of ERK by the neurogenic agents FGF and NGF is dependent upon protein kinase Cdelta (PKCdelta), whereas ERK activation in response to the mitogenic EGF is independent of PKCdelta. Antisense PKCdelta oligonucleotides or the PKCdelta-specific inhibitor rottlerin inhibited FGF- and NGF-induced, but not EGF-induced, ERK activation. In contrast, EGF-induced ERK activation was inhibited by the phosphatidylinositol-3-kinase inhibitor wortmannin, which had no effect upon FGF-induced ERK activation. Rottlerin also inhibited the activation of MAP kinase kinase (MEK) in response to activated Raf, but had no effect upon c-Raf activity or ERK activation by activated MEK. These results indicate that PKCdelta functions either downstream from or in parallel with c-Raf, but upstream of MEK. Inhibition of PKCdelta also blocked neurite outgrowth induced by FGF and NGF in PC12 cells and by activated Raf in H19-7 cells, indicating a role for PKCdelta in the neurogenic effects of FGF, NGF, and Raf. Interestingly, the PKCdelta requirement is apparently cell type specific, since FGF-induced ERK activation was independent of PKCdelta in NIH 3T3 murine fibroblasts, in which FGF is a mitogen. These data demonstrate that PKCdelta contributes to growth factor specificity and response in neuronal cells and may also promote cell-type-specific differences in growth factor signaling.  相似文献   

3.
To define the molecular bases of growth factor-induced signal transduction pathways, antibodies known to block the activity of either protein kinase C (PKC) or the fos protein were introduced into PC12 cells by microinjection. The antibody against PKC significantly inhibited neurite outgrowth when scored 24 h after microinjection and exposure to nerve growth factor (NGF). Microinjection of antibodies to fos significantly increased the percentage of neurite-bearing cells after exposure to either NGF or basic fibroblast growth factor (bFGF) but inhibited the stimulation of DNA synthesis by serum, suggesting that in PC12 cells, fos is involved in cellular proliferation. Thus, activation of PKC is involved in the induction of neurite outgrowth by NGF, but expression of the fos protein, which is induced by both NGF and bFGF, is not necessary and inhibits neurite outgrowth.  相似文献   

4.
We have studied the effects of nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) on epidermal growth factor (EGF) binding to PC12 cells. We show that NGF and bFGF rapidly induce a reduction in 125I-EGF binding to PC12 cells in a dose-dependent manner. This decrease amounts to 50% for NGF and 35% for bFGF. Both factors appear to act through a protein kinase C(PKC)-independent pathway, because their effect persists in PKC-downregulated PC12 cells. Scatchard analysis indicates that NGF and bFGF decrease the number of high affinity EGF binding sites. In addition to their effect on EGF binding, NGF and bFGF activate in intact PC12 cells one or several serine/threonine kinases leading to EGF receptor threonine phosphorylation. Using an in vitro phosphorylation system, we show that NGF- or bFGF-activated extracellular regulated kinase 1 (ERK1) is able to phosphorylate a kinase-deficient EGF receptor. Phosphoamino acid analysis indicates that this phosphorylation occurs mainly on threonine residues. Furthermore, two comparable phosphopeptides are observed in the EGF receptor, phosphorylated either in vivo after NGF treatment or in a cell-free system by NGF-activated ERK1. Finally, a good correlation was found between the time courses of ERK1 activation and 125I-EGF binding inhibition after NGF or bFGF treatment. In conclusion, in PC12 cells the NGF- and bFGF-stimulated ERK1 appears to be involved in the induction of the threonine phosphorylation of the EGF receptor and the decrease in the number of high affinity EGF binding sites.  相似文献   

5.
Separate treatment of PC12h cells with basic fibroblast growth factor (bFGF) and with epidermal growth factor (EGF) induced a selective decrease in the incorporation of radioactive phosphate into a 100,000-dalton soluble protein during phosphorylation with (gamma-32P)ATP of soluble extracts from the cells, as was seen previously with nerve growth factor (NGF). This 100,000-dalton soluble protein was designated in earlier studies as nerve growth factor-sensitive protein 100 (Nsp100). The inhibitory effects of bFGF and EGF on Nsp100 phosphorylation were prevented by pretreatment of PC12h cells with the calcium chelator, EGTA. Treatment of PC12h cells with the plant lectin wheat germ agglutinin (WGA), which binds to N-acetylglucosamine and sialic acid residues on glycoconjugates, blocked the inhibitory effects of bFGF, EGF, and NGF on Nsp100 phosphorylation. The blockage by WGA was reversed by the addition of the lectin-specific sugar N-acetylglucosamine to the PC12h cultures. Although pretreatment of PC12h cells with succinylated WGA, which has the ability to bind to N-acetylglucosamine but not to sialic acid residues, failed to block the inhibitory effect of NGF on Nsp100 phosphorylation as described previously, it did prevent the inhibitory effect of bFGF on this phosphorylation. These data suggest that in PC12h cells bFGF and EGF induce a decrease in the phosphorylation of Nsp100 mediated through a Ca2(+)-dependent mechanism, as in the case of NGF. Furthermore, the blockage of the bFGF-induced inhibition of Nsp100 phosphorylation by WGA and its succinylated form indicates that N-acetylglucosamine residues of bFGF receptor molecules might be involved in the mechanism by which bFGF inhibits the phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The epidermal growth factor receptor (EGFR) is important for normal development, differentiation, and cell proliferation. Deregulation of EGFR has been observed in breast cancer. EGFR and signal pathways activated by these receptors have been associated with an advanced tumor stage and a poor clinical prognosis in breast cancer, however, the precise mechanisms responsible for this process are still not known. Here we show that treatment of MCF-7 breast cancer cells with EGF activated Akt and ERK, induced morphological changes, and increased cell motility. In addition, the constitutive expression of Raf-1 and the use of a MEK inhibitor demonstrated the participation of the Raf/MEK/ERK pathway in these processes. Importantly we detected that EGF induced MRP-1, 3, 5 and 7 gene expression and an increase in MRP1 promoter activity. In conclusion, treatment of MCF-7 breast cancer cells with EGF, in the absence of other growth factors, resulted in activation of EGFR signal transduction pathways; which were related with cell motility and drug resistance.  相似文献   

7.
Kleijn M  Proud CG 《FEBS letters》2000,476(3):262-265
Epidermal and nerve growth factors (EGF and NGF) activate protein synthesis and initiation factor eIF2B in rat phaeochromocytoma (PC12) cells. The activation of protein synthesis by EGF or NGF depends upon extracellular regulated kinase kinase (MEK)/extracellular regulated kinase signalling. Here we show that PD98059, an inhibitor of MEK activation, blocks the activation of eIF2B by EGF or NGF. It is known that eIF2B activity can be inhibited by phosphorylation at Ser535 in its epsilon-subunit by glycogen synthase kinase (GSK)-3. We find that inactivation of GSK-3 by EGF or NGF is blocked by PD98059. However, neither EGF nor NGF caused a detectable change in phosphorylation of Ser535 of eIF2Bepsilon. Thus, the EGF- and NGF-induced activation of eIF2B in PC12 cells involves regulatory mechanisms distinct from dephosphorylation of the GSK-3 site.  相似文献   

8.
Inhibition of growth factor signaling pathways by lovastatin   总被引:3,自引:0,他引:3  
Human fibroblasts treated with the antihypercholesterolaemic drug, lovastatin, displayed a diminished signaling response to epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). Supplementing the culture medium with mevalonic acid restored the signaling response. Not all growth factor signaling pathways were impaired, however, as platelet-derived growth factor (PDGF-BB) and basic fibroblast growth factor (bFGF) responses were refractory to lovastatin treatment. These results suggest the involvement of product(s) of mevalonate metabolism (e.g., prenylated proteins such as p21ras or G proteins) in the signal transduction of EGF, insulin and IGF-I. The inhibition of cell growth by lovastatin may be caused by the inability of the cell to enter the S phase of the cell cycle due to obstruction of the signaling of progression factors.  相似文献   

9.
10.
11.
bFGF、NGF、EGF及其受体在人胚神经管早期发育中的表达   总被引:3,自引:0,他引:3  
研究bFGF、NGF、EGF及其受体在人胚神经管早期发育中的表达。方法 应用免疫组织化学方法和图像分析。结果显示bFGF和NGF的表达时序不同,bFGF阳性细胞出现较早,在所检测在各个发育阶段均呈阳性表达,而NGF出现较晚,随着胚龄增加,免疫阳性着色逐渐增强,bFGF分布较NGF广泛,而EGF在所检测的各个发育阶段均呈阴性。flg、TrkA、EGFR表达时序和分布相似,三者在所检测的各个发育阶段均阳性。结果表明NGF和bFGF均通过其特异性受体介导,在胚胎神经管形成和分化的不同阶段发挥着重作用,EGF及其受体的作用有待进一步研究。  相似文献   

12.
Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occurred at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin beta1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin beta1 and fibronectin in a MEK-ERK-dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.  相似文献   

13.
Epidermal growth factor receptor: Elements of intracellular communication   总被引:13,自引:0,他引:13  
While EGF has an important function in cell growth regulation, the molecular mechanisms by which intracellular signal connect the EGF: receptor complex on the plasma membrane with the initiation of DNA synthesis and mitogenesis is not well understood. The discovery that rasGAP, PI-3 kinase and PLC-gamma 1 are substrates for the EGF receptor tyrosine kinase has provided a beginning in understanding the biochemistry underlying growth factor receptor transduction.  相似文献   

14.
Abstract: The protein kinase inhibitors K-252a and K-252b have been shown earlier to block the actions of nerve growth factor and other neurotrophins and, at lower concentrations, to selectively potentiate neurotrophin-3 actions. In the present study we show that K-252a, but not K-252b, enhances epidermal growth factor (EGF)- and basic fibroblast growth factor (bFGF)-induced neurite outgrowth of PC12 cells at higher concentrations than required for neurotrophin inhibition. In parallel, tyrosine phosphorylation of extracellular signal-regulated kinases (Erks) elicited by EGF or bFGF was also increased in the presence of K-252a, and this signal was prolonged for 6 h. EGF- and bFGF-induced phosphorylation of phospholipase C-γ1 were not changed. The effect of K-252a on Erks was resistant to chronic treatment with phorbol ester, indicating that protein kinase C is not involved in this potentiation. In partial contrast to the actions of K-252a, the neurotrophin-3-potentiating effect of K-252b was accompanied by an increase in tyrosine phosphorylation of the Erks and of phospholipase C-γ1. Finally, although K-252a alone did not induce neurite outgrowth or tyrosine phosphorylation of Erks or phospholipase C-γ1, this compound alone stimulated phosphatidylinositol hydrolysis. Our findings identify activities of K-252a besides the direct interaction with neurotrophin receptors and suggest that a K-252a-sensitive protein kinase or phosphatase might be involved in signal transduction for EGF and bFGF. Our results are further compatible with the hypothesis that sustained activation of Erks may be important in PC12 differentiation.  相似文献   

15.
Nerve growth factor (NGF) and acidic or basic fibroblast growth factor (aFGF and bFGF, respectively) induce neurite outgrowth from the rat pheochromocytoma cell line, PC12. The neurites induced by these three factors are stable for up to a month in cell culture in the continued presence of any of the above growth factors. bFGF (ED50 = 30 pg/ml) is 800 fold more potent in stimulating neurite outgrowth than aFGF (ED50 = 25 ng/ml) and 260 fold more potent than NGF (ED50 = 8 ng/ml). While the neurotropic activities of aFGF and NGF are potentiated by heparin, that of bFGF is both partially inhibited or stimulated, depending upon the concentration of bFGF. Radioreceptor binding experiments show that aFGF and bFGF bind to a common binding site on the PC12 cell surface. Affinity labeling studies demonstrate a single receptor with an apparent molecular weight of 145,000 daltons, which corresponds to the high molecular weight receptor identified in BHK-21 cells. NGF does not appear to compete with aFGF or bFGF for binding to the receptor. Heparin blocked the binding of bFGF to the receptor but had only a small inhibitory effect on the binding of aFGF to the receptor. Thus, it appears that heparin inhibition of the neurotropic effects of bFGF occurs, at least in part, by impairing the interaction of bFGF with the receptor, while having little effect on that of aFGF. The stimulatory effects of heparin on the neurotropic activity of aFGF, bFGF, and NGF may occur through a site not associated with the respective cellular receptor for the growth factors.  相似文献   

16.
Expression of both basic fibroblast growth factor (bFGF) and FGF receptors (FGFR) by vascular smooth muscle cells suggests that autocrine FGF signaling mechanisms may have important functions. Inhibition of smooth muscle cell bFGF expression provokes apoptosis, suggesting that endogenous bFGF generates an anti-apoptotic signal. The purpose of this study was to determine whether the survival function of endogenous bFGF requires signaling through FGFR. A recombinant adenovirus encoding a truncated murine FGFR-1 lacking the kinase domain (DN-FGFR) efficiently expressed the transgene in cultured rat aortic smooth muscle cells. The truncated receptor acted in a dominant negative fashion to effectively prevent receptor-mediated signaling, assessed by phosphorylation of p42/p44 MAP kinase. Expression of DN-FGFR provoked apoptosis of SMC in a dose-dependent fashion that was insensitive to recombinant bFGF but could be rescued by platelet derived growth factor or epidermal growth factor. Heterologous growth factor rescue was inhibited by PD98059, an inhibitor of MEK (MAP kinase-kinase). These data demonstrate that inhibition of FGF receptor activation results in apoptosis and suggest that an intact autocrine FGF signaling loop is required for vascular smooth muscle cell survival in vitro. These findings also implicate the Ras/Raf/MEK /MAP kinase cascade in generating or sustaining the survival signal. The functional significance of an autocrine FGF signaling loop in non-transformed cells has important implications for cardiovascular development, remodeling and disease. J. Cell. Physiol. 177:58–67, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
In a previous study, we show that stimulation of chemotaxis in rat pheochromocytoma PC12 cells by nerve growth factor (NGF) and epidermal growth factor (EGF) requires activation of the RAS-ERK signaling pathway. In this study, we compared the threshold levels of ERK activation required for EGF and NGF-stimulated chemotaxis in PC12 cells. The threshold ERK activity required for NGF to stimulate chemotaxis was approximately 30% lower than that for EGF. PD98059 treatment inhibited EGF stimulation of growth and chemotaxis; however, stimulation of chemotaxis required an EGF concentration approximately 10 times higher than for stimulation of PC12 cell growth. Thus, ERK-dependent cellular functions can be differentially elicited by the concentration of EGF. Also, treatment of PC12 cells with the PI3-K inhibitor LY294002 reduced ERK activation by NGF; thus, higher NGF concentrations were required to initiate chemotaxis and to achieve the same maximal chemotactic response seen in untreated PC12 cells. Therefore, the threshold NGF concentration to stimulate chemotaxis could be adjusted by the crosstalk between the ERK and PI3-K pathways, and the contributions of PI3-K and ERK to signal chemotaxis varied with the concentrations of NGF used. In comparison, LY294002 treatment had no effect on ERK activation by EGF, but the chemotactic response was reduced at all the concentrations of EGF tested indicating that NGF and EGF differed in the utilization of ERK and PI3-K to signal chemotaxis in PC12 cells. (Mol Cell Biochem 271: 29–41, 2005)  相似文献   

18.
B Cheng  M P Mattson 《Neuron》1991,7(6):1031-1041
NGF and bFGF have recently been shown to have biological activity in central neurons, but their normal functions and mechanisms of action are unknown. Since central neurons are particularly vulnerable to hypoglycemia that occurs with ischemia or insulin overdose, we tested the hypothesis that growth factors can protect neurons against hypoglycemic damage. NGF and bFGF each prevented glucose deprivation-induced neuronal damage in human cerebral cortical and rat hippocampal cell cultures (EGF was ineffective). Protection was afforded when the growth factors were administered before (NGF and bFGF) or up to 12 hr following (NGF) the onset of hypoglycemia. Direct measurements of intracellular calcium levels and manipulations of calcium influx demonstrated that sustained elevations in intracellular calcium levels mediated the hypoglycemic damage. NGF and bFGF each prevented the hypoglycemia-induced elevations of intracellular calcium. These findings indicate that growth factors can stabilize neuronal calcium homeostasis in central neurons and thereby protect them against environmental insults.  相似文献   

19.
We have examined the possible involvements of pertussis toxin (PT)-sensitive guanosine triphosphate (GTP)-binding protein (Gp) and protein kinase C (PKC) in the mitogenic signaling pathways of various growth factors by the use of PT-pretreated and/or 12-O-tetradecanoyl phorbol-13-acetate (TPA)-pretreated mouse fibroblasts. Effects of PT pretreatment (inactivation of PT-sensitive Gp) and TPA pretreatment (depletion of PKC) on mitogen-induced DNA synthesis varied significantly and systematically in response to growth factors: mitogenic responses of cells to thrombin, bombesin, and bradykinin were almost completely abolished both in PT- and TPA-pretreated cells; responses to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and vanadate were reduced to approximately 50% both in PT- and TPA-pretreated cells compared with native cells; response to basic fibroblast growth factor (bFGF) was not affected in PT-pretreated cells but was inhibited to some extent in TPA-pretreated cells. Thus, growth factors examined have been classified into three groups with regard to the involvements of PT-sensitive Gp and PKC in their signal transduction pathways. Binding of each growth factor to its receptor was not affected significantly by pretreatment of cells with PT or TPA. Inhibitory effects of PT and TPA pretreatment on each mitogen-induced DNA synthesis were not additive, suggesting that the functions of PT-sensitive Gp and PKC lie on an identical signal transduction pathway. Although all three groups of mitogens activated PKC, signaling of each growth factor depends to a varying extent on the function of PKC. Our results indicate that a single peptide growth factor such as EGF, PDGF, or bFGF acts through multiple signaling pathways to induce cell proliferation.  相似文献   

20.
alpha-Thrombin, a G-protein-coupled receptor agonist, is mitogenic for neonatal vascular smooth muscle (VSM) cells, but it also causes secretion of the tyrosine kinase-coupled receptor agonist platelet-derived growth factor (PDGF). In order to determine the role of growth factors with tyrosine kinase-coupled receptors in thrombin's mitogenic signal transduction cascade, the synergistic effect of basic fibroblast growth factor (bFGF) in this system was examined. While bFGF itself is a growth factor for VSM cells, it causes a 1.7-fold synergistic effect when added together with thrombin. Herbimycin A, a specific tyrosine kinase inhibitor, both decreases thrombin-induced mitogenesis by greater than 90% and abolishes tyrosine phosphorylation of phospholipase C (PLC)-gamma-1. The magnitude and time course of the increase in intracellular free calcium concentration in response to thrombin is comparable in both the presence and absence of herbimycin A. These results provide evidence that herbimycin A specifically inhibits PLC-gamma-1 tyrosine phosphorylation without affecting VSM cell viability or calcium release. Furthermore, tyrosine phosphorylation is a necessary step in thrombin's mitogenic signal transduction cascade, but it is not essential for thrombin-induced release of calcium from intracellular stores. These data suggest that a tyrosine kinase, possibly supplied by the bFGF receptor, plays an essential role in thrombin-induced mitogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号