首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net photosynthetic rates (P n) of easy (EK 16-3) and difficult-to-acclimatize (EK 11-1) sea oats genotypes were examined under the following culture conditions: (1) photoautotrophic [sugar-free medium, high photosynthetic photon flux (PPF), high vessel ventilation rates and CO2 enrichment, (PA)]; (2) modified photomixotrophic [sugar-containing medium diluted with sugar-free medium over time, high PPF, and high vessel ventilation rates (PM)]; (3) modified photomixotrophic enriched [same as PM with CO2 enrichment, (PME)]; or (4) conventional photomixotrophic [sugar-containing medium, low PPF, and low vessel ventilation rates (control)]. Regardless of genotype, plantlets cultured under PA conditions died within 2 wk, whereas under PM and PME conditions, plantlets increased their P n. After 6 wk, P n per gram dry weight was 1.7 times greater in EK 16-3 than EK 11-1 plantlets cultured under PME conditions. In vitro-produced leaves of EK 16-3 plantlets were elongated with expanded blades, whereas EK 11-1 produced short leaves without expanded blades, especially under control conditions. After in vitro culture, EK 16-3 PME plantlets exhibited the highest dry weights among treatments. EK 16-3 PME and EK 16-3 PM had similarly high survivability, shoot and root dry weights and leaf lengths ex vitro compared to EK 16-3 control and EK 11-1 PM and PME plantlets. Ex vitro growth, survivability and P n per leaf area of either genotype were not affected by CO2 enrichment under modified photomixotrophic conditions. These results suggest that growth and survivability of sea oats genotypes with different acclimatization capacities can be enhanced by optimizing culture conditions.  相似文献   

2.
Investigations were carried out to achieve cent per cent transplantation success of micropropagated Leucaena leucocephala (a fast growing multipurpose leguminous tree species) plantlets using two vesicular arbuscular mycorrhizal fungi, Glomus fasciculatum and Glomus macrocarpum. Plantlets were obtained by rooting the shoots [obtained through; hypocotyl callus in presence of 10-5M BAP + 10-6M NAA; and axillary bud sprouting from cotyledonary and other nodes in presence of 10-5M BAP, on Gamborg's B5 medium], on half strength B5 medium supplemented with 5×10-6M IBA. Subsequent to the nodulation of their roots with Rhizobium (strain PRGL 001)in soilrite, these plantlets were tranferred to sterilized garden soil by laying inoculum of either Glomus fasciculatum or Glomus macrocarpum around their roots. Only 20% of the plantlets survived in soils lacking VAM fungus. In contrast, cent per cent of the plantlets of Leucaena leucocephala established very well and showed good growth in VAM inoculated soil. Roots of the later plantlets showed presence of both external and internal hyphae with well formed arbuscules and vesicles confirming the establishment of good mycorrhizal association. These studies convincingly demonstrate that the mycorrhizal association help in successful establishment of tissue culture raised plantlets of Leucaena leucocephala in the field conditions by alleviating the transplantation shock. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Chenopods are generally regarded as non-host plants for mycorrhizal fungi and are believed not to benefit from colonization by mycorrhizal fungi. Perennial Atriplex nummularia Lindl., growing under field conditions, showed a relatively high level of colonization by mycorrhizal fungi (10–30% of root length colonized) in spring and summer. Accordingly, two glasshouse experiments were designed to assess the effects of inoculation with mycorrhizal fungi (with a single species or a mixture of different species) on growth, nutrient uptake, and rhizosphere bacterial community composition of A. nummularia at high and low salinity levels (2.2 and 12 dSm–1). Only low and patchy colonization by mycorrhizal fungi (1–2 of root length colonized) was detected in inoculated plants under glasshouse conditions which was unaffected by salinity. Despite the low colonization, inoculation increased plant growth and affected nutrient uptake at both salinity levels. The effects were higher at an early stage of plant development (6weeks) than at a later stage (9–10 weeks). Salinity affected the bacterial community composition in the rhizosphere as examined by ribosomal intergenic spacer amplification (RISA) of 16S rDNA, digitization of the band patterns and multivariate analysis. The effects of inoculation with mycorrhizal fungi on growth of A. nummularia may be attributed to (i) direct effects of mycorrhizal fungi on plant nutrient uptake and/or (ii) indirect effects via mycorrhizal-induced changes in the bacterial community composition.  相似文献   

4.
Nutrient acquisition and growth of citronella Java (Cymbopogon winterianus Jowitt) was studied in a P-deficient sandy soil to determine the effects of mycorrhizal symbiosis and soil compaction. A pasteurized sandy loam soil was inoculated either with rhizosphere microorganisms excluding VAM fungi (non-mycorrhizal) or with the VAM fungus, Glomus intraradices Schenck and Smith (mycorrhizal) and supplied with 0, 50 or 100 mg P kg-1 soil. The soil was compacted to a bulk density of 1.2 and 1.4 Mg m-3 (dry soil basis). G. intraradices substantially increased root and shoot biomass, root length, nutrient (P, Zn and Cu) uptake per unit root length and nutrient concentrations in the plant, compared to inoculation with rhizosphere microorganisms when the soil was at the low bulk density and not amended with P. Little or no plant response to the VAM fungus was observed when the soil was supplied with 50 or 100 mg P kg-1 soil and/or compacted to the highest bulk density. At higher soil compaction and P supply the VAM fungus significantly reduced root length. Non-mycorrhizal plants at higher soil compaction produced relatively thinner roots and had higher concentrations and uptake of P, Zn and Cu than at lower soil compaction, particularly under conditions of P deficiency. The quality of citronella Java oil measured in terms citronellal and d-citronellol concentration did not vary appreciably due to various soil treatments.  相似文献   

5.
Summary Heterotrophic plantlets obtained by in vitro propagation are biochemically different compared to autotrophic plantlets. When heterotrophic plantlets are transferred to ex vitro conditions, higher irradiance levels are generally applied. Irradiance levels higher than those used in vitro lead to oxidative stress symptoms, that can be counteracted by CO2 concentrations above normal. We analyzed the stability and activity of Rubisco and leaf-soluble sugars and starch contents in chestnut plantlets transferred from in vitro to ex vitro conditions under four treatments obtained by associating two irradiances of 150 (low light, LL) and 300 (high light, HL) μmolm−2s−1, respectively three and six times in vitro irradiance, with two CO2 levels of 350 (low CO2, LCO2) and 700 (high CO2, HCO2) μll−1. In in vitro plantlets it was possible to immunodetect apparent products of degradation of Rubisco large subunit (LSU). In ex vitro plantlets, these degradation products were no longer dtected except under LL associated with LCO2. The decrease in soluble sugars and starch in plantlets under HL HCO2 gave an indication of a faster acquisition of autotrophic characteristics. However, under the same treatment, a down-regulation of Rubisco activity was observed. From the results taken as a whole, two aspects seem to be confirmed: HL HCO2 is more efficient in inducing an autotrophic behavior in chestnut ex vitro plantlets; actively growing systems as ex vitro plantlets reflect the down-regulation of Rubisco by HCO2 without accumulation of carbohydrates.  相似文献   

6.
Summary Photomixotrophic (Pm) micropropagation systems (ones that use a sugar-containing medium) have been used by many rescarchers for transplant production of St. John's wort. However, these methods have not yet been adopted for commercial applications, probably due to the low percentage of regeneration in vitro, and a low growth rate after transplanting ex vitro. In contrast, it is well known that the use of a photoautotrophic (Pa) micropropagation system (one that uses sugar-free medium) can promote the growth and improve the quality of plantlets in vitro, and enhance the growth during acclimatization for many plant species. In the current study, leafy nodal cuttings were cultured under Pa conditions and the growth and quality were compared with those cultured under Pm conditions. After 21d of culture, Pa conditions enhanced the growth and quality of St. John's wort plantlets in vitro, and these plantlets showed faster growth after transplantaing ex vitro compared with those cultured under Pm conditions.  相似文献   

7.
Plantlets of coconut were cultured in vitro under three different ambient conditions including a standard culture room, a culture room inside a glasshouse with natural light but controlled temperature, and a standard glasshouse with natural light and natural fluctuations of temperature. Plantlets from the 3 treatments were compared in terms of growth, plant survival as well as net photosynthesis and efficiency of PSII (Fv/Fm ratio) both at the end of the in vitro stage and at 3 stages of ex vitro acclimatization. At the end of the in vitro stage, plantlets cultured in vitro under glasshouse conditions showed the best performance showing the highest photosynthesis rate, dry weight and number of leaves. Plantlets from the standard culture room showed the lowest photosynthesis and growth rate. After 6 months of ex vitro acclimatization, plantlets originally grown in vitro under glasshouse conditions maintained better field survival and growth rates in terms of fresh weight, dry weight and leaf number than plantlets originally grown in vitro in the standard culture room. Although more studies are required to define the reason for this effect, it is clear that the conditions of standard culture rooms are not the best for in vitro cultivation of coconut and perhaps other tropical species.  相似文献   

8.
The mycorrhizal status of water-impounding tank bromeliad epiphytes from three locales differing in altitude and moisture regime within Venezuelan cloud forest was examined. Species of vesicular-arbuscular mycorrhizal (VAM) fungi found in arboreal soils were compared to VAM fungi found in terrestrial soils. Sixteen of the 19 epiphytes examined for the presence of VAM fungi had roots with infection stages; 14 of these specimens showed growth of the fine endophyte Glomus tenue. Fine endophyte was the only VAM fungus found associated with epiphytes in the driest locale studied, while coarse VAM fungi (Gigaspora and Scutellospora spp.) were found at sampling locales receiving more moisture. Root infection was usually composed of intercellular hyphae and peletons; few arbuscules were observed. However, abundant extracellular hyphae were often observed tangled about roots in arboreal soil. It is concluded that epiphytic bromeliads probably benefit, at least periodically, from VAM fungi scavenging for sporadically available nutrients in arboreal soils. Glomus tenue may be particularly important as a colonizing VAM fungus in drier sites of Venezuelan cloud forest. The species composition of VAM fungi in arboreal soils was different to that of terrestrial soils sampled directly under epiphytic bromeliad perches, suggesting that VAM fungi species associated with bromeliads are dispersed to their hosts by vagile animal vectors.  相似文献   

9.
Michelsen  A.  Rosendahl  S. 《Plant and Soil》1990,124(1):7-13
The effect of vesicular-arbuscular mycorrhizal (VAM) fungi on growth and drought resistance of Acacia nilotica and Leucaena leucocephala seedlings was studied in a glasshouse experiment. The experimental design was a 2·2·2 factorial: ± mycorrhizal inoculation, ± application of phosphorus fertilizer and ± repeated drought treatment. The growth promoting effect of VAM fungi equalled the effect of phosphorus fertilization after 12 weeks. The drought treatment reduced seedling biomass and nodulation. Differences between the plant species were found with respect to growth improvements due to VAM inoculation and/or phosphorus fertilization under drought stress conditions. The results are discussed in relation to plant drought resistance and reforestation in the subhumid to arid tropics.  相似文献   

10.
Summary The vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus versiforme increased significantly the growth ofAsparagus officinalis under controlled conditions using Turface as the growth medium. The growth responses, including increases in root fresh weight, numbers of shoots, shoot dry weight, and shoot height follow a pattern similar to other mycorrhizal systems. Indigenous VAM fungi appeared to have negative effects on average shoot fresh and dry weight, number of shoots per pot and average shoot height on one year oldA. officinalis seedlings obtained from the field and grown under controlled conditions. These results may be due either to the high levels of soluble phosphate present in the soil or the ineffectiveness of the particular indigenous fungi as mycorrhizal fungi in asparagus. Indigenous mycorrhizal fungi overwinter in asparagus root crown as vesicles and as external and internal hyphae. Soil obtained from the same fields as the one year old crowns was a good source of mycorrhizal inoculum for sterile seedlings.  相似文献   

11.
The inoculation of Pistacia terebinthus with vesicular-arbuscular mycorrhizal (VAM) fungi and the spread of the infection were studied using a mixed cropping system, under glasshouse conditions, with Salvia officinalis, Lavandula officinalis and Thymus vulgaris colonized by Glomus mosseae as an inoculation method. This method was compared with soil inoculum placed under the seed or distributed evenly in the soil. Indirect inoculation with all the aromatic plants tested significantly increased VAM root colonization of P. terebinthus compared with the use of soil inoculum, although the effect on plant growth was different for each one of the aromatic species used as inoculum source. Inoculation with L. officinalis and T. vulgaris were the best treatments resulting in high VAM colonization and growth enhancement of P. terebinthus.  相似文献   

12.
To improve large-scale in vitro production of Oplopanax elatus Nakai, we cultured somatic embryo-derived plantlets under a heterotrophic condition (semi-solid culture with sucrose), photoautotrophic condition (semi-solid culture without sucrose), or modified photoautotrophic condition (liquid culture with forced ventilation). The plantlets grown under the modified photoautotrophic condition had more leaves as well as higher chlorophyll content, and higher net photosynthetic rate than those grown under the conventional conditions. Further, the photoautotrophically grown plantlets acclimatized better and sooner upon ex vitro transplantation than did the conventionally cultured plantlets. Consequently, a photoautotrophic culture method with forced ventilation is effective for enhancing the growth and acclimatization of O. elatus.  相似文献   

13.
The photosynthetic responses of Rehmannia glutinosa grown under photoautotrophic or heterotrophic conditions in vitro were investigated after transfer to greenhouse conditions. In addition, the changes in carbohydrate content and survival rates of the plantlets were evaluated. During six days after transplantation, the photosynthetic rate declined and photoinhibitory impairments represented by decrease of Fv/Fm and chlorophyll content were observed regardless of environmental conditions in vitro. Excessive transpiration was observed in plantlets grown under heterotrophic conditions during that period. Fructose and glucose content of the plantlets grown under photoautotrophic conditions increased with time and reached almost the same level of field grown plants after day 15. Under heterotrophic conditions, in contrast, the content of these sugars decreased continuously during that period. It is suggested that high survival rate of plantlets grown under photoautotrophic conditions has to be attributed to improvement of photosynthetic competence by imposed high light intensity and CO2 concentration in vitro. The results strongly suggest that the control of transpiration during early stage after transplantation plays a key role in the acclimatization process, and photoautotrophic conditions could be a solution to solve the problems associated with transplantation stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Maize (Zea mays) and sorghum (Sorghum bicolor) were inoculated with a range of VAM fungi and grown under water-stressed and unstressed conditions. There was considerable variation amongst the inocula in their effects on plant growth. Inoculation with Glomus clarum produced the biggest plants in each host, with Glomus monosporum and Acaulospora sp. giving the least growth overall. Root infection produced by the different inocula also varied, but levels were not correlated with effects on plant growth. Water-stress reduced plant growth, with the effects not being altered by mycorrhizal infection. VAM infection levels were not affected by water-stress. Spore production from most inocula was reduced by water-stress, both in total spore numbers and in terms of spores per gram plant weight. Sporulation of G. clarum, G. epigeum and G. monosporum were affected less by stress than were the other inocula. Spore production was in general greater on sorghum than on maize, but the host effect varied amongst the inocula.  相似文献   

15.
Serret  M.D.  Trillas  M.I.  Araus  J.L. 《Photosynthetica》2001,39(1):67-73
We tested the effect of growing conditions during micropropagation on the fast kinetics of chlorophyll (Chl) fluorescence of Gardenia jasminoides Ellis plantlets during a 4-week acclimation to ex vitro. We studied whether photoautotrophic growing in vitro produced plantlets with less photoinhibition impairment during acclimation. Of the growing conditions stimulating photoautotrophy in vitro, only loose tube caps had a positive effect, whereas low sucrose or sucrose-free content in the medium and high PPFD showed a negative effect. Thus, plantlets cultured with 3 % (m/v) of sucrose were subsequently less photoinhibited throughout acclimation than those cultured with low sucrose (0.5 %) or sucrose-free media. Moreover, at the end of acclimation the former plantlets showed Fv/Fm and Fv/F0 ratios typical of unstressed ex vitro plants as well as a higher Chl content and ratio of Chls to carotenoids. Plantlets cultured at a photosynthetic photon fluence density (PPFD) of 50 µmol m–2 s–1 also showed a better performance at the end of acclimation than those cultured at a higher (110 µmol m–2 s–1) PPFD. Thus except in the case of loose-tube closure, gardenia plantlets cultured in vitro under conventional sucrose concentration and PPFD are the least photoinhibited during acclimation. Nevertheless, significant interactions between the in vitro growing factors were observed at the end of acclimation.  相似文献   

16.
The hypothesis that inoculation of transplants with vesicular-arbuscular mycorrhizal (VAM) fungi before planting into saline soils alleviates salt effects on growth and yield was tested on lettuce (Lactuca sativa L.) and onion (Allium cepa L.). A second hypothesis was that fungi isolated from saline soil are more effective in counteracting salt effects than those from nonsaline soil. VAM fungi from high- and low-salt soils were trap-cultured, their propagules quantified and adjusted to a like number, and added to a pasteurized soil mix in which seedlings were grown for 3–4 weeks. Once the seedlings were colonized by VAM fungi, they were transplanted into salinized (NaCl) soil. Preinoculated lettuce transplants grown for 11 weeks in the saline soils had greater shoot mass compared with nonVAM plants at all salt levels [2 (control), 4, 8 and 12 dS m–1] tested. Leaves of VAM lettuce at the highest salt level were significantly greener (more chlorophyll) than those of the nonVAM lettuce. NonVAM onions were stunted due to P deficiency in the soil, but inoculation with VAM fungi alleviated P deficiency and salinity effects; VAM onions were significantly larger at all salt levels than nonVAM onions. In a separate experiment, addition of P to salinized soil reduced the salt stress effect on nonVAM onions but to a lesser extent than by VAM inoculation. VAM fungi from the saline soil were not more effective in reducing growth inhibition by salt than those from the nonsaline site. Colonization of roots and length of soil hyphae produced by the VAM fungi decreased with increasing soil salt concentration. Results indicate that preinoculation of transplants with VAM fungi can help alleviate deleterious effects of saline soils on crop yield.  相似文献   

17.
Summary Abundance and distribution of vascular plants and vesicular-arbuscular mycorrhizal (VAM) fungi across a soil moisture-nutrient gradient were studied at a single site. Vegetation on the site varied from a dry mesic paririe dominated by little bluestem (Schizachyrium scoparium) to emergent aquatic vegetation dominated by cattail (Typha latifolia) and water smartweed (Polygonum hydropiperoides). Plant cover, VAM spore abundance, plant species richness, and number of VAM fungi represented as spores, had significant positive correlations with each other and with percent organic matter. The plant and VAM spore variables had significant negative correlations with soil pH and available Ca, Mg, P and gravimetric soil moisture. Using stepwise multiple regression, Ca was found to be the best predictor of spore abundance. Test for association between plant species and VAM fungal spores indicated that the spores of Glomus caledonium are associated with plants from dry, nutrient poor sites and spores of gigaspora gigantea are positively associated with plants occurring on the wet, relatively nutrient rich sites. Glomus fasciculatum was the most abundant and widely distributed VAM fungus and it had more positive associations with endophyte hosts than the other VAM fungi. We found no relationship between beta niche breadth of plant species and the presence or absence of mycorrhizal infection. However, our data suggest that some plant species may vary with respect to their infection status depending upon soil moisture conditions that may fluctuate seasonally or annually to favor or hinder VAM associations.  相似文献   

18.
Suboptimal environmental conditions inside closed culture vessels can be detrimental to in vitro growth and survival of plantlets during the acclimatization process. In this study, the environmental factors that affected Doritaenopsis plantlet growth and the relationship between growth and sugar metabolism were investigated. Cultures were maintained under heterotrophic, photoautotrophic, or photomixotrophic conditions under different light intensities and CO2 concentrations. Photoautotrophic growth of Doritaenopsis hybrid plantlets could be promoted significantly by increasing the light intensity and CO2 concentration in the culture vessel. The concentration of different sugars in the leaves of in vitro-grown plantlets varied with different cultural treatments through a 10-wk culture period. Starch, reducing sugars, and nonreducing sugar contents were higher in plantlets grown under photoautotrophic and photomixotrophic conditions than in heterotrophically grown plantlets. Net photosynthesis rates were also higher in photoautotrophically and photomixotrophically grown plantlets. These results support the hypothesis that pyruvate, produced by the decarboxylation of malate, is required for optimal photoautotrophy under high photosynthetic photon flux density. Growth was greatest in plantlets grown under CO2-enriched photoautotrophic and photomixotrophic conditions with high photosynthetic photon flux density. The physiological status of in vitro-grown Crassulacean acid metabolism (CAM)-type Doritaenopsis showed a transition from C3 to CAM prior to acclimatization.  相似文献   

19.
There is increasing evidence that the sucrose normally added to the culture medium affects negatively the photosynthetic capacity of plantlets. At the same time, however, sucrose cannot be eliminated from the medium, as it is required for normal in vitro growth. We argue that this is true only under the conventional light conditions of growth-rooms. In the present paper irradiance of growth-rooms was increased 10 times and although the sucrose-inhibitory effect was found at high sucrose concentrations, it was possible to grow coconut (Cocos nucifera L.) plantlets without sucrose. Those plantlets showed both high photosynthetic capacity and comparable in vitro growth to those grown with sucrose in the medium under conventional growth-room irradiance. Nevertheless, the best growth was achieved under mixotrophic conditions where at high irradiance and moderate sucrose concentrations plantlets accumulated 27 % more biomass than plantlets grown without sucrose under high irradiance and 43 and 73 % more biomass than their counterparts at low irradiance with or without sucrose, respectively.  相似文献   

20.
Summary Chitinase activities have been compared in tobacco roots (Nicotiana tabacum cv. Xanthi nc) infected by the pathogenic fungus Chalara elegans or three species of vesicular arbuscular mycorrhizal (VAM) fungi: Glomus versiforme, G. intraradix and G. fasciculatum, using native polyacrylamide gel electrophoresis (PAGE). All previously known acidic chitinase isoforms were stimulated in roots by the pathogenic fungus and by the VAM fungi, while two new acidic chitinase isoforms were specifically induced in response to the endomycorrhizal association. After separation in sodium dodecyl sulphate polyacrylamide denaturing gels (SDS-PAGE) under non-reducing conditions, the estimated apparent molecular mass for these additional acidic chitinase isoforms from VAM-colonized samples was 33 kDa, compared to 30 kDa for the main activity stimulated in C. elegans-infected root extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号