共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Self-renewal and pluripotency of embryonic stem (ES) cells are maintained by several signaling cascades and by expression of intrinsic factors, such as Oct4, Nanog and Sox2. The mechanism regulating these signaling cascades in ES cells is of great interest. Recently, we have demonstrated that natriuretic peptide receptor A (NPR-A), a specific receptor for atrial and brain natriuretic peptides (ANP and BNP, respectively), is expressed in pre-implantation embryos and in ES cells. Here, we examined whether NPR-A is involved in the maintenance of ES cell pluripotency. RNA interference-mediated knockdown of NPR-A resulted in phenotypic changes, indicative of differentiation, downregulation of pluripotency factors (such as Oct4, Nanog and Sox2) and upregulation of differentiation genes. NPR-A knockdown also resulted in a marked downregulation of phosphorylated Akt. Furthermore, NPR-A knockdown induced accumulation of ES cells in the G1 phase of the cell cycle. Interestingly, we found that ANP was expressed in self-renewing ES cells, whereas its level was reduced after ES cell differentiation. Treatment of ES cells with ANP upregulated the expression of Oct4, Nanog and phosphorylated Akt, and this upregulation depended on NPR-A signaling, because it was completely reversed by pretreatment with either an NPR-A antagonist or a cGMP-dependent protein kinase inhibitor. These findings provide a novel role for NPR-A in the maintenance of self-renewal and pluripotency of ES cells. 相似文献
3.
4.
5.
Sasaki N Okishio K Ui-Tei K Saigo K Kinoshita-Toyoda A Toyoda H Nishimura T Suda Y Hayasaka M Hanaoka K Hitoshi S Ikenaka K Nishihara S 《The Journal of biological chemistry》2008,283(6):3594-3606
Embryonic stem (ES) cell self-renewal and pluripotency are maintained by several signaling cascades and by expression of intrinsic factors, such as Oct3/4 and Nanog. The signaling cascades are activated by extrinsic factors, such as leukemia inhibitory factor, bone morphogenic protein, and Wnt. However, the mechanism that regulates extrinsic signaling in ES cells is unknown. Heparan sulfate (HS) chains are ubiquitously present as the cell surface proteoglycans and are known to play crucial roles in regulating several signaling pathways. Here we investigated whether HS chains on ES cells are involved in regulating signaling pathways that are important for the maintenance of ES cells. RNA interference-mediated knockdown of HS chain elongation inhibited mouse ES cell self-renewal and induced spontaneous differentiation of the cells into extraembryonic endoderm. Furthermore, autocrine/paracrine Wnt/beta-catenin signaling through HS chains was found to be required for the regulation of Nanog expression. We propose that HS chains are important for the extrinsic signaling required for mouse ES cell self-renewal and pluripotency. 相似文献
6.
Adamo A Sesé B Boue S Castaño J Paramonov I Barrero MJ Izpisua Belmonte JC 《Nature cell biology》2011,13(6):652-659
We identify LSD1 (lysine-specific demethylase 1; also known as KDM1A and AOF2) as a key histone modifier that participates in the maintenance of pluripotency through the regulation of bivalent domains, a chromatin environment present at the regulatory regions of developmental genes that contains both H3K4 di/trimethylation and H3K27 trimethylation marks. LSD1 occupies the promoters of a subset of developmental genes that contain bivalent domains and are co-occupied by OCT4 and NANOG in human embryonic stem cells, where it controls the levels of H3K4 methylation through its demethylase activity. Thus, LSD1 has a role in maintaining the silencing of several developmental genes in human embryonic stem cells by regulating the critical balance between H3K4 and H3K27 methylation at their regulatory regions. 相似文献
7.
8.
9.
Nucleophosmin regulates cell cycle progression and stress response in hematopoietic stem/progenitor cells 总被引:3,自引:0,他引:3
Li J Sejas DP Rani R Koretsky T Bagby GC Pang Q 《The Journal of biological chemistry》2006,281(24):16536-16545
Nucleophosmin (NPM) is a multifunctional protein frequently overexpressed in actively proliferating cells. Strong evidence indicates that NPM is required for embryonic development and genomic stability. Here we report that NPM enhances the proliferative potential of hematopoietic stem cells (HSCs) and increases their survival upon stress challenge. Both short term liquid culture and clonogenic progenitor cell assays show a selective expansion of NPM-overexpressing HSCs. Interestingly, HSCs infected with NPM retrovirus show significantly reduced commitment to myeloid differentiation compared with vector-transduced cells, and majority of the NPM-overexpressing cells remains primitive during a 5-day culture. Bone marrow transplantation experiments demonstrate that NPM promotes the self-renewal of long term repopulating HSCs while attenuated their commitment to myeloid differentiation. NPM overexpression induces rapid entry of HSCs into the cell cycle and suppresses the expression of several negative cell cycle regulators that are associated with G(1)-to-S transition. NPM knockdown elevates expression of these negative regulators and exacerbates stress-induced cell cycle arrest. Finally, overexpression of NPM promotes the survival and recovery of HSCs and progenitors after exposure to DNA damage, oxidative stress, and hematopoietic injury both in vivo and in vitro. DNA repair kinetics study suggests that NPM has a role in reducing the susceptibility of chromosomal DNA to damage rather than promoting DNA damage repair. Together, these results indicate that NPM plays an important role in hematopoiesis via mechanisms involving modulation of HSC/progenitor cell cycle progression and stress response. 相似文献
10.
Gómez-Nicola D Valle-Argos B Pallas-Bazarra N Nieto-Sampedro M 《Molecular biology of the cell》2011,22(12):1960-1970
The impact of inflammation is crucial for the regulation of the biology of neural stem cells (NSCs). Interleukin-15 (IL-15) appears as a likely candidate for regulating neurogenesis, based on its well-known mitogenic properties. We show here that NSCs of the subventricular zone (SVZ) express IL-15, which regulates NSC proliferation, as evidenced by the study of IL-15-/- mice and the effects of acute IL-15 administration, coupled to 5-bromo-2'-deoxyuridine/5-ethynyl-2'-deoxyuridine dual-pulse labeling. Moreover, IL-15 regulates NSC differentiation, its deficiency leading to an impaired generation of neuroblasts in the SVZ-rostral migratory stream axis, recoverable through the action of exogenous IL-15. IL-15 expressed in cultured NSCs is linked to self-renewal, proliferation, and differentiation. IL-15-/- NSCs presented deficient proliferation and self-renewal, as evidenced in proliferation and colony-forming assays and the analysis of cell cycle-regulatory proteins. Moreover, IL-15-deficient NSCs were more prone to differentiate than wild-type NSCs, not affecting the cell population balance. Lack of IL-15 led to a defective activation of the JAK/STAT and ERK pathways, key for the regulation of proliferation and differentiation of NSCs. The results show that IL-15 is a key regulator of neurogenesis in the adult and is essential to understanding diseases with an inflammatory component. 相似文献
11.
HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity 总被引:2,自引:0,他引:2
Clement V Sanchez P de Tribolet N Radovanovic I Ruiz i Altaba A 《Current biology : CB》2007,17(2):165-172
Cancer stem cells are rare tumor cells characterized by their ability to self-renew and to induce tumorigenesis. They are present in gliomas and may be responsible for the lethality of these incurable brain tumors. In the most aggressive and invasive type, glioblastoma multiforme (GBM), an average of about one year spans the period between detection and death [1]. The resistence of gliomas to current therapies may be related to the existence of cancer stem cells [2-6]. We find that human gliomas display a stemness signature and demonstrate that HEDGEHOG (HH)-GLI signaling regulates the expression of stemness genes in and the self-renewal of CD133(+) glioma cancer stem cells. HH-GLI signaling is also required for sustained glioma growth and survival. It displays additive and synergistic effects with temozolomide (TMZ), the current chemotherapeutic agent of choice. TMZ, however, does not block glioma stem cell self-renewal. Finally, interference of HH-GLI signaling with cyclopamine or through lentiviral-mediated silencing demonstrates that the tumorigenicity of human gliomas in mice requires an active pathway. Our results reveal the essential role of HH-GLI signaling in controlling the behavior of human glioma cancer stem cells and offer new therapeutic possibilities. 相似文献
12.
Sundari Chetty Elise N. Engquist Elie Mehanna Kathy O. Lui Alexander M. Tsankov Douglas A. Melton 《The Journal of cell biology》2015,210(7):1257-1268
Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. 相似文献
13.
《Cell cycle (Georgetown, Tex.)》2013,12(9):1435-1447
The continued turn over of human embryonic stem cells (hESC) while maintaining an undifferentiated state is dependent on the regulation of the cell cycle. Here we asked the question if a single cell cycle gene could regulate the self-renewal or pluripotency properties of hESC. We identified that the protein expression of the p27Kip1 cell cycle inhibitor is low in hESC cells and increased with differentiation. By adopting a gain and loss of function strategy we forced or reduced its expression in undifferentiating conditions to define its functional role in self-renewal and pluripotency. Using undifferentiation conditions, overexpression of p27Kip1 in hESC lead to a G1 phase arrest with an enlarged and flattened hESC morphology and consequent loss of self-renewal ability. Loss of p27Kip1 caused an elongated/scatter cell-like phenotype involving upregulation of Brachyury and Twist gene expression. We demonstrate the novel finding that p27Kip1 protein occupies the Twist1 gene promoter and manipulation of p27Kip1 by gain and loss of function is associated with Twist gene expression changes. These results define p27Kip1 expression levels as critical for self-renewal and pluripotency in hESC and suggest a role for p27Kip1 in controlling an epithelial to mesenchymal transition (EMT) in hESC. 相似文献
14.
Cristina Menchón Michael J. Edel Juan Carlos Izpisua Belmonte 《Cell cycle (Georgetown, Tex.)》2011,10(9):1435-1447
The continued turn over of human embryonic stem cells (hESC) while maintaining an undifferentiated state is dependent on the regulation of the cell cycle. Here we asked the question if a single cell cycle gene could regulate the self-renewal or pluripotency properties of hESC. We identified that the protein expression of the p27Kip1 cell cycle inhibitor is low in hESC cells and increased with differentiation. By adopting a gain and loss of function strategy we forced or reduced its expression in undifferentiating conditions to define its functional role in self-renewal and pluripotency. Using undifferentiation conditions, overexpression of p27Kip1 in hESC lead to a G1 phase arrest with an enlarged and flattened hESC morphology and consequent loss of self-renewal ability. Loss of p27Kip1 caused an elongated/scatter cell-like phenotype involving upregulation of Brachyury and Twist gene expression. We demonstrate the novel finding that p27Kip1 protein occupies the Twist1 gene promoter and manipulation of p27Kip1 by gain and loss of function is associated with Twist gene expression changes. These results define p27Kip1 expression levels as critical for self-renewal and pluripotency in hESC and suggest a role for p27Kip1 in controlling an epithelial to mesenchymal transition (EMT) in hESC. 相似文献
15.
16.
Stem cells and progenitor cells are the cells of origin for multi-cellular organisms and organs. They play key roles during development and their dysregulation gives rise to human diseases such as cancer. The recent development of induced pluripotent stem cell (iPSC) technology which converts somatic cells to stem-like cells holds great promise for regenerative medicine. Nevertheless, the understanding of proliferation, differentiation, and self-renewal of stem cells and organ-specific progenitor cells is far from clear. Recently, the Hippo pathway was demonstrated to play important roles in these processes. The Hippo pathway is a newly established signaling pathway with critical functions in limiting organ size and suppressing tumorigenesis. This pathway was first found to inhibit cell proliferation and promote apoptosis, therefore regulating cell number and organ size in both Drosophila and mammals. However, in several organs, disturbance of the pathway leads to specific expansion of the progenitor cell compartment and manipulation of the pathway in embryonic stem cells strongly affects their self-renewal and differentiation. In this review, we summarize current observations on roles of the Hippo pathway in different types of stem cells and discuss how these findings changed our view on the Hippo pathway in organ development and tumorigenesis. 相似文献
17.
Background
Although human embryonic stem cells (hESCs) hold great promise as a source of differentiated cells to treat several human diseases, many obstacles still need to be surmounted before this can become a reality. First among these, a robust chemically-defined system to expand hESCs in culture is still unavailable despite recent advances in the understanding of factors controlling hESC self-renewal.Methodology/Principal Findings
In this study, we attempted to find new molecules that stimulate long term hESC self-renewal. In order to do this, we started from the observation that a commercially available serum replacement product has a strong positive effect on the expansion of undifferentiated hESCs when added to a previously reported chemically-defined medium. Subsequent experiments demonstrated that the active ingredient within the serum replacement is lipid-rich albumin. Furthermore, we show that this activity is trypsin-resistant, strongly suggesting that lipids and not albumin are responsible for the effect. Consistent with this, lipid-poor albumin shows no detectable activity. Finally, we identified the major lipids bound to the lipid-rich albumin and tested several lipid candidates for the effect.Conclusions/Significance
Our discovery of the role played by albumin-associated lipids in stimulating hESC self-renewal constitutes a significant advance in the knowledge of how hESC pluripotency is maintained by extracellular factors and has important applications in the development of increasingly chemically defined hESC culture systems. 相似文献18.
19.
Sajjad Ahmad Charles Osei‐Bempong Reza Dana Ula Jurkunas 《Journal of cellular physiology》2010,225(1):15-19
The cornea is the clear front of the eye and its surface is composed of an epithelium. This is renewed by stem cells located at the limbus, which encircles the periphery of the cornea. These limbal stem cells become lost or deficient in the blinding disease of limbal stem cell deficiency. In this review article, we discuss the historical perspective in managing limbal stem cell deficiency as well as describing the more contemporary treatment options, and in particular the culture and transplantation of human limbal stem cells. This treatment was first proposed 13 years ago and many case series have been presented to date showing promising outcomes of this technique. However, challenges still remain in treating the debilitating disease of limbal stem cell deficiency. Here we discuss some of the questions, which remain to be answered in this field. J. Cell. Physiol. 225: 15–19, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
20.
Tala Mohsen-Kanson Anne-Laure Hafner Brigitte Wdziekonski Phi Villageois Bérengère Chignon-Sicard Christian Dani 《Biochemical and biophysical research communications》2013,430(3):871-875
Human adipose-derived stem cell populations express cell surface markers such as CD105, CD73, CD146 and CD140a/PDFGRα. However, it was unclear whether these markers could discriminate subpopulations of undifferentiated cells and whether the expression of these markers is modulated during differentiation. To address this issue, we analysed the immunophenotype of cultured human multipotent adipose derived stem (hMADS) cell populations at different adipocyte differentiation steps. We found that 100% of undifferentiated cells expressed CD73 and CD105. In contrast, CD146 and CD140a/PDFGRα marked two different subpopulations of cells. CD140a/PDGFRα subpopulation was regulated by FGF2, a critical factor of human adipose-derived stem cell self-renewal. During differentiation, CD73 was maintained and marked lipid-laden cells, whereas CD105 expression was inhibited in fully differentiated cells. The percentage of CD146 and CD140a/PDFGRα-positive cells declined as soon as cells had undergone differentiation. Altogether, these data support the notion that expanded adipose-derived stem cells are heterogeneous mixtures of cells and cell surface markers studied can discriminate subpopulations. 相似文献