首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ingram-Smith C  Woods BI  Smith KS 《Biochemistry》2006,45(38):11482-11490
AMP-forming acetyl-CoA synthetase [ACS; acetate:CoA ligase (AMP-forming), EC 6.2.1.1] catalyzes the activation of acetate to acetyl-CoA in a two-step reaction. This enzyme is a member of the adenylate-forming enzyme superfamily that includes firefly luciferase, nonribosomal peptide synthetases, and acyl- and aryl-CoA synthetases/ligases. Although the structures of several superfamily members demonstrate that these enzymes have a similar fold and domain structure, the low sequence conservation and diversity of the substrates utilized have limited the utility of these structures in understanding substrate binding in more distantly related enzymes in this superfamily. The crystal structures of the Salmonella enterica ACS and Saccharomyces cerevisiae ACS1 have allowed a directed approach to investigating substrate binding and catalysis in ACS. In the S. enterica ACS structure, the propyl group of adenosine 5'-propylphosphate, which mimics the acyl-adenylate intermediate, lies in a hydrophobic pocket. Modeling of the Methanothermobacter thermautotrophicus Z245 ACS (MT-ACS1) on the S. cerevisiae ACS structure showed similar active site architecture, and alignment of the amino acid sequences of proven ACSs indicates that the four residues that compose the putative acetate binding pocket are well conserved. These four residues, Ile312, Thr313, Val388, and Trp416 of MT-ACS1, were targeted for alteration, and our results support that they do indeed form the acetate binding pocket and that alterations at these positions significantly alter the enzyme's affinity for acetate as well as the range of acyl substrates that can be utilized. In particular, Trp416 appears to be the primary determinant for acyl chain length that can be accommodated in the binding site.  相似文献   

2.
Halophilic archaea activate acetate via an (acetate)-inducible AMP-forming acetyl-CoA synthetase (ACS), (Acetate + ATP + CoA Acetyl-CoA + AMP + PPi). The enzyme from Haloarcula marismortui was purified to homogeneity. It constitutes a 72-kDa monomer and exhibited a temperature optimum of 41°C and a pH optimum of 7.5. For optimal activity, concentrations between 1 M and 1.5 M KCl were required, whereas NaCl had no effect. The enzyme was specific for acetate (100%) additionally accepting only propionate (30%) as substrate. The kinetic constants were determined in both directions of the reaction at 37°C. Using the N-terminal amino acid sequence an open reading frame — coding for a 74 kDa protein — was identified in the partially sequenced genome of H. marismortui. The function of the ORF as acs gene was proven by functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies, following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione and substrates. Refolding was dependent on salt concentrations of at least 2 M KCl. The recombinant enzyme showed almost identical molecular and catalytic properties as the native enzyme. Sequence comparison of the Haloarcula ACS indicate high similarity to characterized ACSs from bacteria and eukarya and the archaeon Methanosaeta. Phylogenetic analysis of ACS sequences from all three domains revealed a distinct archaeal cluster suggesting monophyletic origin of archaeal ACS.  相似文献   

3.
1. Crude extracts of seeds of Pinus radiata catalysed acetate-, propionate-, n-butyrate- and n-valerate-dependent PP(i)-ATP exchange in the presence of MgCl(2), which was apparently due to a single enzyme. Propionate was the preferred substrate. Crude extracts did not catalyse medium-chain or long-chain fatty acid-dependent exchange. 2. Ungerminated dry seeds contained short-chain fatty acyl-CoA synthetase activity. The activity per seed was approximately constant for 11 days after imbibition and then declined. The enzyme was located only in the female gametophyte tissue. 3. The synthetase was purified 70-fold. 4. Some properties of the enzyme were studied by [(32)P]PP(i)-ATP exchange. K(m) values for acetate, propionate, n-butyrate and n-valerate were 4.7, 0.21, 0.33 and 2.1mm respectively. Competition experiments between acetate and propionate demonstrated that only one enzyme was involved and confirmed that the affinity of the enzyme for propionate was greater than that for acetate. CoA inhibited fatty acid-dependent PP(i)-ATP exchange. The enzyme catalysed fatty acid-dependent [(32)P]PP(i)-dATP exchange. 5. The enzyme also catalysed the fatty acyl-AMP-dependent synthesis of [(32)P]ATP from [(32)P]PP(i). Apparent K(m) (acetyl-AMP) and apparent K(m) (propionyl-AMP) were 57mum and 7.5mum respectively. The reaction was inhibited by AMP and CoA. 6. Purified enzyme catalysed the synthesis of acetyl-CoA and propionyl-CoA. Apparent K(m) (acetate) and apparent K(m) (propionate) were 16mm and 7.5mm respectively. The rate of formation of acetyl-CoA was enhanced by pyrophosphatase. 7. It was concluded that fatty acyl adenylates are intermediates in the formation of the corresponding fatty acyl-CoA.  相似文献   

4.
On-site monitoring of volatile fatty acids (VFAs), such as propionate, is industrially and medically important. The present study developed a VFA biosensing system comprised of two recombinant enzymes, propionate coenzyme A (CoA) transferase (PCT) from Clostridium propionicum and acyl-CoA oxidase from Arabidopsis thaliana. This system produced hydrogen peroxide in the presence of acetyl-CoA, oxygen, and VFA substrates, which could be quantified by colorimetric methods using peroxidase and dye reagents (e.g., p-aminobenzoic acid plus 4-aminoantipyrine or Amplex Red). The use of PCT and acetyl-CoA, rather than acyl-CoA synthetases (ACS) and CoA-SH, obviated a background reaction of dye reagents with CoA-SH and enabled very sensitive detection of VFAs (down to 1 microM propionate, more than 100-fold more sensitive compared to previously developed ACS biosensors). We demonstrated its utility by measuring propionate concentrations in serum and fermentation samples. Results suggest that our biosensing system is applicable to the detection of propionate in medical and fermentation samples.  相似文献   

5.
The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales.  相似文献   

6.
AMP-forming acetyl-CoA synthetases (ACSs) are ubiquitous in all three domains of life. Here, we report the first characterization of an ACS from a hyperthermophilic organism, from the archaeon Pyrobaculum aerophilum. The recombinant ACS, the gene product of ORF PAE2867, showed extremely high thermostability and thermoactivity at temperatures around 100 degrees C. In contrast to known monomeric or homodimeric mesophilic ACSs, the P. aerophilum ACS was a 610 kDa homooctameric protein, with a significant lower content of thermolabile (Cys, Asn, and Gln) and higher content of charged (Glu, Lys, and Arg) amino acids. Kinetic analyses revealed an unusual broad substrate spectrum for organic acids and an extremely high affinity for acetate (K(m) 3 microM).  相似文献   

7.
8.
Anaerobic ammonium-oxidizing bacteria were recently shown to use short-chain organic acids as additional energy source. The AMP-forming acetyl-CoA synthetase gene (acs) of Kuenenia stuttgartiensis, encoding an important enzyme involved in the conversion of these organic acids, was identified and heterologously expressed in Escherichia coli to investigate the activation of several substrates, that is, acetate, propionate and butyrate. The heterologously expressed ACS enzyme could complement an E. coli triple mutant deficient in all pathways of acetate activation. Activity was observed toward several short-chain organic acids, but was highest with acetate. These properties are in line with a mixotrophic growth of anammox bacteria. In addition to acs, the genome of K. stuttgartiensis contained the essential genes of an acetyl-CoA synthase/CO dehydrogenase complex and genes putatively encoding two isoenzymes of archaeal-like ADP-forming acetyl-CoA synthetase underlining the importance of acetyl-CoA as intermediate in the carbon assimilation metabolism of anammox bacteria.  相似文献   

9.
Acyl-coenzyme A synthetases (ACSs) catalyze the fundamental, initial reaction in fatty acid metabolism. "Activation" of fatty acids by thioesterification to CoA allows their participation in both anabolic and catabolic pathways. The availability of the sequenced human genome has facilitated the investigation of the number of ACS genes present. Using two conserved amino acid sequence motifs to probe human DNA databases, 26 ACS family genes/proteins were identified. ACS activity in either humans or rodents was demonstrated previously for 20 proteins, but 6 remain candidate ACSs. For two candidates, cDNA was cloned, protein was expressed in COS-1 cells, and ACS activity was detected. Amino acid sequence similarities were used to assign enzymes into subfamilies, and subfamily assignments were consistent with acyl chain length preference. Four of the 26 proteins did not fit into a subfamily, and bootstrap analysis of phylograms was consistent with evolutionary divergence. Three additional conserved amino acid sequence motifs were identified that likely have functional or structural roles. The existence of many ACSs suggests that each plays a unique role, directing the acyl-CoA product to a specific metabolic fate. Knowing the full complement of ACS genes in the human genome will facilitate future studies to characterize their specific biological functions.  相似文献   

10.
Lee S  Son H  Lee J  Min K  Choi GJ  Kim JC  Lee YW 《Eukaryotic cell》2011,10(8):1043-1052
Acetyl coenzyme A (acetyl-CoA) is a crucial metabolite for energy metabolism and biosynthetic pathways and is produced in various cellular compartments with spatial and temporal precision. Our previous study on ATP citrate lyase (ACL) in Gibberella zeae revealed that ACL-dependent acetyl-CoA production is important for histone acetylation, especially in sexual development, but is not involved in lipid synthesis. In this study, we deleted additional acetyl-CoA synthetic genes, the acetyl-CoA synthetases (ACS genes ACS1 and ACS2), to identify alternative acetyl-CoA production mechanisms for ACL. The ACS1 deletion resulted in a defect in sexual development that was mainly due to a reduction in 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol production, which is required for perithecium development and maturation. Another ACS coding gene, ACS2, has accessorial functions for ACS1 and has compensatory functions for ACL as a nuclear acetyl-CoA producer. This study showed that acetate is readily generated during the entire life cycle of G. zeae and has a pivotal role in fungal metabolism. Because ACSs are components of the pyruvate-acetaldehyde-acetate pathway, this fermentation process might have crucial roles in various physiological processes for filamentous fungi.  相似文献   

11.
The heterotrophic, hyperthermophilic archaeon Pyrococcus furiosus is a new addition to the growing list of genetically-tractable microorganisms suitable for metabolic engineering to produce liquid fuels and industrial chemicals. P. furiosus was recently engineered to generate 3-hydroxypropionate (3-HP) from CO2 and acetyl-CoA by the heterologous-expression of three enzymes from the CO2 fixation cycle of the thermoacidophilic archaeon Metallosphaera sedula using a thermally-triggered induction system. The acetyl-CoA for this pathway is generated from glucose catabolism that in wild-type P. furiosus is converted to acetate with concurrent ATP production by the heterotetrameric (α2β2) acetyl-CoA synthetase (ACS). Hence ACS in the engineered 3-HP production strain (MW56) competes with the heterologous pathway for acetyl-CoA. Herein we show that strains of MW56 lacking the α-subunit of either of the two ACSs previously characterized from P. furiosus (ACSI and ACSII) exhibit a three-fold increase in specific 3-HP production. The ΔACSIα strain displayed only a minor defect in growth on either maltose or peptides, while no growth defect on these substrates was observed with the ΔACSIIα strain. Deletion of individual and multiple ACS subunits was also shown to decrease CoA release activity for several different CoA ester substrates in addition to acetyl-CoA, information that will be extremely useful for future metabolic engineering endeavors in P. furiosus.  相似文献   

12.
Acetyl-CoA carboxylase from irradiated cell-suspension cultures of parsley (Petroselinum hortense) has been purified to apparent homogeneity. The procedure included affinity chromatography of the enzyme on avidinmonomer--Sepharose 4B. Molecular weights of about 420000 for the native enzyme and about 220000 for the enzyme subunit were determined respectively by gel filtration or sucrose-density-gradient sedimentation and by electrophoresis in the presence of dodecyl sulfate. The purified enzyme showed an isoelectric point of 5. The enzyme carboxylated the straight-chain acyl-CoA esters of acetate, propionate, and butyrate at decreasing rates in this order. The catalytic efficiency of the carboxylase was highest when ATP existed largely as MgATP2- complex. At the optimum pH of 8 the apparent Km values for the substrates were: acetyl-CoA, 0.15 mmol/1; bicarbonate, 1 mmol/1; MgATP2-, 0.07 mmol/1. The carboxylase was inhibited by greater than 50 mmol/l NaCl, KCl, or Tris/HCl buffer. The putative allosteric activator, citrate, stimulated the enzyme only slightly at concentrations below 2 mmol/l, but strongly inhibited the carboxylase at higher concentrations. The results of these studies demonstrate that several properties of the light-inducible acetyl-CoA carboxylase of parsley cells, an enzyme of the flavonoid pathway, are remarkably similar to those of acetyl-CoA carboxylases from a variety of other organisms.  相似文献   

13.
The mitochondria of pancreatic beta cells are believed to convert insulin secretagogues into products that are translocated to the cytosol where they participate in insulin secretion. We studied the hypothesis that short chain acyl-CoA (SC-CoAs) might be some of these products by discerning the pathways of SC-CoA formation in beta cells. Insulin secretagogues acutely stimulated 1.5-5-fold increases in acetoacetyl-CoA, succinyl-CoA, malonyl-CoA, hydroxymethylglutaryl-CoA (HMG-CoA), and acetyl-CoA in INS-1 832/13 cells as judged from liquid chromatography-tandem mass spectrometry measurements. Studies of 12 relevant enzymes in rat and human pancreatic islets and INS-1 832/13 cells showed the feasibility of at least two redundant pathways, one involving acetoacetate and the other citrate, for the synthesis SC-CoAs from secretagogue carbon in mitochondria and the transfer of their acyl groups to the cytosol where the acyl groups are converted to SC-CoAs. Knockdown of two key cytosolic enzymes in INS-1 832/13 cells with short hairpin RNA supported the proposed scheme. Lowering ATP citrate lyase 88% did not inhibit glucose-induced insulin release indicating citrate is not the only carrier of acyl groups to the cytosol. However, lowering acetoacetyl-CoA synthetase 80% partially inhibited glucose-induced insulin release indicating formation of SC-CoAs from acetoacetate in the cytosol is important for insulin secretion. The results indicate beta cells possess enzyme pathways that can incorporate carbon from glucose into acetyl-CoA, acetoacetyl-CoA, and succinyl-CoA and carbon from leucine into these three SC-CoAs plus HMG-CoA in their mitochondria and enzymes that can form acetyl-CoA, acetoacetyl-CoA, malonyl-CoA, and HMG-CoA in their cytosol.  相似文献   

14.
Short- and medium-chain acyl coenzyme A (acyl-CoA) synthetases catalyze the formation of acyl-CoA from an acyl substrate, ATP, and CoA. These enzymes catalyze mechanistically similar two-step reactions that proceed through an enzyme-bound acyl-AMP intermediate. Here we describe the characterization of a member of this enzyme family from the methane-producing archaeon Methanosarcina acetivorans. This enzyme, a medium-chain acyl-CoA synthetase designated MacsMa, utilizes 2-methylbutyrate as its preferred substrate for acyl-CoA synthesis but cannot utilize acetate and thus cannot catalyze the first step of acetoclastic methanogenesis in M. acetivorans. When propionate or other less favorable acyl substrates, such as butyrate, 2-methylpropionate, or 2-methylvalerate, were utilized, the acyl-CoA was not produced or was produced at reduced levels. Instead, acyl-AMP and PPi were released in the absence of CoA, whereas in the presence of CoA, the intermediate was broken down into AMP and the acyl substrate, which were released along with PPi. These results suggest that although acyl-CoA synthetases may have the ability to utilize a broad range of substrates for the acyl-adenylate-forming first step of the reaction, the intermediate may not be suitable for the thioester-forming second step. The MacsMa structure has revealed the putative acyl substrate- and CoA-binding pockets. Six residues proposed to form the acyl substrate-binding pocket, Lys256, Cys298, Gly351, Trp259, Trp237, and Trp254, were targeted for alteration. Characterization of the enzyme variants indicates that these six residues are critical in acyl substrate binding and catalysis, and even conservative alterations significantly reduced the catalytic ability of the enzyme.AMP-forming acetyl coenzyme A (acetyl-CoA) synthetase (Acs; acetate:CoA ligase [AMP forming], EC 6.2.1.1), which catalyzes the activation of acetate to acetyl-CoA, is a member of the acyl-adenylate-forming enzyme superfamily (8), which consists of acyl- and aryl-CoA ligases, nonribosomal peptide synthetases that mediate the synthesis of peptide and polyketide secondary metabolites, such as gramicidin and tyrocidine, and the enzymes firefly luciferase and α-aminoadipate reductase. Although these enzymes share the property of forming an acyl-adenylate intermediate and are structurally related, they share limited sequence homology and catalyze unrelated reactions in which the intermediate serves different functions for different members of this enzyme family.A two-step mechanism for Acs (equations 1 and 2) in which the reaction proceeds through an acetyl-AMP intermediate has been proposed based on evidence including detection of an enzyme-bound acetyl-AMP (2-4, 38): (1) (2)In the CoA-dependent first step of the reaction, an enzyme-bound acetyl-AMP intermediate is formed from acetate and ATP, and inorganic pyrophosphate (PPi) is released. In the second step, the acetyl group is transferred to the sulfhydryl group of CoA and AMP is released. Other short- (Sacs) and medium-chain acyl-CoA synthetases (Macs) follow a similar reaction mechanism using acyl substrates other than acetate (8, 15).In the 2.3-Å structure of trimeric Saccharomyces cerevisiae Acs1 in a binary complex with AMP (19), the C-terminal domain is positioned away from the N-terminal domain in a conformation for catalysis of the first step of the reaction (equation 1). The 1.75-Å structure of the monomeric Salmonella enterica Acs (AcsSe) (13) in complex with both CoA and adenosine-5′-propylphosphate, an inhibitor of the related propionyl-CoA synthetase (12, 15), which mimics the acetyl-adenylate intermediate, reveals that the C-terminal domain of Acs is rotated approximately 140° toward the N-terminal domain to form the complete active site for catalysis of the second half-reaction (equation 2). In this orientation, the CoA thiol is properly positioned for nucleophilic attack on the acetyl group. In structure/function studies of 4-chlorobenzoate:CoA ligase (CBAL), a distant member of the acyl- and aryl-CoA synthetase subfamily of the acyl-adenylate-forming enzyme superfamily, Wu et al. (39) and Reger et al. (28) provide evidence that PPi produced in the first step of the reaction dissociates from the enzyme before the switch from the first conformation to the second conformation required for CoA binding and catalysis of the second step of the reaction.Acs and Sacs/Macs are widespread in all three domains of life and play a key role in archaea, as suggested by the finding that several thermophilic archaea have multiple open reading frames (ORFs) (up to seven) that encode putative Sacs or Macs (33). The chemolithoautotrophic methanoarchaeon Methanothermobacter thermautotrophicus has two ORFs with high identity to Acs and a third ORF that is likely to encode a Macs. M. thermautotrophicus Acs1 (Acs1Mt) has been biochemically and kinetically characterized, has been shown to have a strong preference for acetate as the acyl substrate, and can also utilize propionate but not butyrate (16, 17).Methanosarcina and Methanosaeta are the only two methanoarchaea isolated that are able to utilize acetate as substrate for methane production. Unlike Methanosaeta species, which utilize Acs for catalyzing the first step of methanogenesis (18, 34), Methanosarcina species employ the acetate kinase-phosphotransacetylase pathway for activation of acetate to acetyl-CoA, and an Acs activity has not been observed in Methanosarcina (1, 23, 30, 32). Surprisingly, an Acs-related sequence was identified in the Methanosarcina acetivorans genome. Here we describe the kinetic characterization this enzyme, designated MacsMa, and show that it utilizes longer acyl substrates than Acs. The preferred acyl substrate was shown to be 2-methylbutyrate, and 2-methylbutyryl-CoA, AMP, and PPi were the products of the reaction, as expected. However, when propionate was used as the acyl substrate, propionyl-CoA was not produced. Instead, in the absence of CoA, propionyl-AMP and PPi were released, whereas in the presence of CoA, the propionyl-AMP intermediate was broken down into AMP and propionate and released along with PPi. Intermediate results were obtained with other acyl substrates, with both acyl-CoA and acyl-AMP production observed.The 2.1-Å crystal structure of MacsMa (31), determined in the absence of any substrate, revealed the enzyme to be in a conformation similar to that of the S. enterica Acs (13) with respect to the position of the C-terminal domain. Through inspection of the MacsMa structure and alignment of Acs, Sacs, and Macs sequences, we identified six residues that form the putative acyl substrate-binding pocket. Individual alterations at these residues dramatically diminished enzyme activity and indicate that the acyl substrate-binding pocket of MacsMa has a very precise architecture that cannot be perturbed.  相似文献   

15.
Substrate specificity of acetyl coenzyme A synthetase   总被引:2,自引:0,他引:2  
Acetyl coenzyme A synthetase (EC 6.2.1.1) has been examined for its ability to accept various carboxylic acids as substrates in place of acetic acid. The activity of the enzyme with these substrates was monitored using a coupled enzyme assay and high pressure liquid chromatography (HPLC) analysis. Short chain carboxylic acids were found to be active including: propionic, acrylic, fluoroacetic, methacrylic, 3-chloropropionic, 3-bromopropionic, and propiolic. The kinetic parameters, Km and % Vmax of the carboxylic acid substrates, are reported and show that these acids are poorer substrates than acetic acid. Several of the acyl CoAs were synthesized on a preparative scale using enzyme catalysis, purified using preparative HPLC, and characterized using proton NMR spectroscopy. In the course of the NMR identification, a complete and fully resolved spectral assignment for all the protons of coenzyme A was made and is reported. The acyl-CoA analogs should be useful as substrate analogs and as potential affinity labels for enzymes that bind acetyl-CoA.  相似文献   

16.
By consensus, the acyl-CoA synthetase (ACS) community, with the advice of the human and mouse genome nomenclature committees, has revised the nomenclature for the mammalian long-chain acyl-CoA synthetases. ACS is the family root name, and the human and mouse genes for the long-chain ACSs are termed ACSL1,3-6 and Acsl1,3-6, respectively. Splice variants of ACSL3, -4, -5, and -6 are cataloged. Suggestions for naming other family members and for the nonmammalian acyl-CoA synthetases are made.  相似文献   

17.
The genetic operon for propionic acid degradation in Salmonella enterica serovar Typhimurium contains an open reading frame designated prpE which encodes a propionyl coenzyme A (propionyl-CoA) synthetase (A. R. Horswill and J. C. Escalante-Semerena, Microbiology 145:1381-1388, 1999). In this paper we report the cloning of prpE by PCR, its overexpression in Escherichia coli, and the substrate specificity of the enzyme. When propionate was utilized as the substrate for PrpE, a K(m) of 50 microM and a specific activity of 120 micromol. min(-1). mg(-1) were found at the saturating substrate concentration. PrpE also activated acetate, 3-hydroxypropionate (3HP), and butyrate to their corresponding coenzyme A esters but did so much less efficiently than propionate. When prpE was coexpressed with the polyhydroxyalkanoate (PHA) biosynthetic genes from Ralstonia eutropha in recombinant E. coli, a PHA copolymer containing 3HP units accumulated when 3HP was supplied with the growth medium. To compare the utility of acyl-CoA synthetases to that of an acyl-CoA transferase for PHA production, PHA-producing recombinant strains were constructed to coexpress the PHA biosynthetic genes with prpE, with acoE (an acetyl-CoA synthetase gene from R. eutropha [H. Priefert and A. Steinbüchel, J. Bacteriol. 174:6590-6599, 1992]), or with orfZ (an acetyl-CoA:4-hydroxybutyrate-CoA transferase gene from Clostridium propionicum [H. E. Valentin, S. Reiser, and K. J. Gruys, Biotechnol. Bioeng. 67:291-299, 2000]). Of the three enzymes, PrpE and OrfZ enabled similar levels of 3HP incorporation into PHA, whereas AcoE was significantly less effective in this capacity.  相似文献   

18.
Propionate is used to protect bread and animal feed from moulds. The mode of action of this short-chain fatty acid was studied using Aspergillus nidulans as a model organism. The filamentous fungus is able to grow slowly on propionate, which is oxidized to acetyl-CoA via propionyl-CoA, methylcitrate and pyruvate. Propionate inhibits growth of A. nidulans on glucose but not on acetate; the latter was shown to inhibit propionate oxidation. When grown on glucose a methylcitrate synthase deletion mutant is much more sensitive towards the presence of propionate in the medium as compared to the wild-type and accumulates 10-fold higher levels of propionyl-CoA, which inhibits CoA-dependent enzymes such as pyruvate dehydrogenase, succinyl-CoA synthetase and ATP citrate lyase. The most important inhibition is that of pyruvate dehydrogenase, as this affects glucose and propionate metabolism directly. In contrast, the blocked succinyl-CoA synthetase can be circumvented by a succinyl-CoA:acetate/propionate CoA-transferase, whereas ATP citrate lyase is required only for biosynthetic purposes. In addition, data are presented that correlate inhibition of fungal polyketide synthesis by propionyl-CoA with the accumulation of this CoA-derivative. A possible toxicity of propionyl-CoA for humans in diseases such as propionic acidaemia and methylmalonic aciduria is also discussed.  相似文献   

19.
Abstract There is considerable evidence that acetyl-CoA synthetase (acetate thiokinase, ACS, EC 6.2.1) is responsible for acetate activation in the mesophilic acetotrophic methanogen Methanothrix soehngenii . If the pyrophosphate produced by ACS is simply cleaved, two high-energy phosphodiester bonds are expended in acetate activation. Hi High ACS activity (2–4 μmol min−1 mg protein−1) was present in cell-free extracts of the thermophile Methanothrix sp. strain CALS-1. The 23-fold purified enzyme had a molecular mass near 165 kDa and a subunit molecular mass near 78 kDa, suggesting that the enzyme is a homodimer. The temperature optimum for ACS was near 70°C and the apparent K m values were 2–4 mM for acetate and 5.5 mM for MgATP. Coenzyme A at concentrations greater than 0.2 mM inhibited ACS, while acetyl-CoA was not inhibitory. AMP and pyrophosphate inhibited ACS with K i values of 5 mM and 1.5 mM respectively. Other divalent cations could replace Mg2+, with Mn2+ showing the highest activity. Activity with ITP was 20% of that with ATP, and other nucleotides tested were considerably less active. Since Methanothrix sp. strain CALS-1 has an active soluble pyrophosphatase, it appears that it uses the same energetically costly method for acetate activation as M. soehngenii .  相似文献   

20.
X Mai  M W Adams 《Journal of bacteriology》1996,178(20):5897-5903
Pyrococcus furiosus is a strictly anaerobic archaeon (archaebacterium) that grows at temperatures up to 105 degrees C by fermenting carbohydrates and peptides. Cell extracts have been previously shown to contain an unusual acetyl coenzyme A (acetyl-CoA) synthetase (ACS) which catalyzes the formation of acetate and ATP from acetyl-CoA by using ADP and phosphate rather than AMP and PPi. We show here that P. furiosus contains two distinct isoenzymes of ACS, and both have been purified. One, termed ACS I, uses acetyl-CoA and isobutyryl-CoA but not indoleacetyl-CoA or phenylacetyl-CoA as substrates, while the other, ACS II, utilizes all four CoA derivatives. Succinyl-CoA did not serve as a substrate for either enzyme. ACS I and ACS II have similar molecular masses (approximately 140 kDa), and both appear to be heterotetramers (alpha2beta2) of two different subunits of 45 (alpha) and 23 (beta) kDa. They lack metal ions such as Fe2+, Cu2+, Zn2+, and Mg2+ and are stable to oxygen. At 25 degrees C, both enzymes were virtually inactive and exhibited optimal activities above 90 degrees C (at pH 8.0) and at pH 9.0 (at 80 degrees C). The times required to lose 50% of their activity at 80 degrees C were about 18 h for ACS I and 8 h for ACS II. With both enzymes in the acid formation reactions, ADP and phosphate could be replaced by GDP and phosphate but not by CDP and phosphate or by AMP and PPi. The apparent Km values for ADP, GDP, and phosphate were approximately 150, 132, and 396 microM, respectively, for ACS I (using acetyl-CoA) and 61, 236, and 580 microM, respectively, for ACS II (using indoleacetyl-CoA). With ADP and phosphate as substrates, the apparent Km values for acetyl-CoA and isobutyryl-CoA were 25 and 29 microM, respectively, for ACS I and 26 and 12 microM, respectively, for ACS II. With ACS II, the apparent Km value for phenylacetyl-CoA was 4 microM. Both enzymes also catalyzed the reverse reaction, the ATP-dependent formation of the CoA derivatives of acetate (I and II), isobutyrate (I and II), phenylacetate (II only), and indoleacetate (II only). The N-terminal amino acid sequences of the two subunits of ACS I were similar to those of ACS II and to that of a hypothetical 67-kDa protein from Escherichia coli but showed no similarity to mesophilic ACS-type enzymes. To our knowledge, ACS I and II are the first ATP-utilizing enzymes to be purified from a hyperthermophile, and ACS II is the first enzyme of the ACS type to utilize aromatic CoA derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号