首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genome sequence of the hyperthermophilic bacterium Thermotoga maritima MSB8 presents evidence for lateral gene transfer events between bacterial and archaeal species. To estimate the extent of genomic diversity across the order Thermotogales, a comparative genomic hybridization study was initiated to compare nine Thermotoga strains to the sequenced T. maritima MSB8. Many differences could be associated with substrate utilization patterns, which are most likely a reflection of the environmental niche that these individual species occupy. A detailed analysis of some of the predicted variable regions demonstrates many examples of the deletion/insertion of complete cassettes of genes and of gene rearrangements and insertions of DNA within genes, with the C or N terminus being retained. Although the mechanism for gene transfer in this lineage remains to be elucidated, this analysis suggests possible associations with repetitive elements and highlights the possible benefits of rampant genetic exchange to these species.  相似文献   

2.
Members of the Deinococcaceae (e.g., Thermus, Meiothermus, Deinococcus) contain A/V-ATPases typically found in Archaea or Eukaryotes which were probably acquired by horizontal gene transfer. Two methods were used to quantify the extent to which archaeal or eukaryotic genes have been acquired by this lineage. Screening of a Meiothermus ruber library with probes made against Thermoplasma acidophilum DNA yielded a number of clones which hybridized more strongly than background. One of these contained the prolyl tRNA synthetase (RS) gene. Phylogenetic analysis shows the M. ruber and D. radiodurans prolyl RS to be more closely related to archaeal and eukaryal forms of this gene than to the typical bacterial type. Using a bioinformatics approach, putative open reading frames (ORFs) from the prerelease version of the D. radiodurans genome were screened for genes more closely related to archaeal or eukaryotic genes. Putative ORFs were searched against representative genomes from each of the three domains using automated BLAST. ORFs showing the highest matches against archaeal and eukaryotic genes were collected and ranked. Among the top-ranked hits were the A/V-ATPase catalytic and noncatalytic subunits and the prolyl RS genes. Using phylogenetic methods, ORFs were analyzed and trees assessed for evidence of horizontal gene transfer. Of the 45 genes examined, 20 showed topologies in which D. radiodurans homologues clearly group with eukaryotic or archaeal homologues, and 17 additional trees were found to show probable evidence of horizontal gene transfer. Compared to the total number of ORFs in the genome, those that can be identified as having been acquired from Archaea or Eukaryotes are relatively few (approximately 1%), suggesting that interdomain transfer is rare.  相似文献   

3.
Sulfolobus acidocaldarius is an aerobic thermoacidophilic crenarchaeon which grows optimally at 80 degrees C and pH 2 in terrestrial solfataric springs. Here, we describe the genome sequence of strain DSM639, which has been used for many seminal studies on archaeal and crenarchaeal biology. The circular genome carries 2,225,959 bp (37% G+C) with 2,292 predicted protein-encoding genes. Many of the smaller genes were identified for the first time on the basis of comparison of three Sulfolobus genome sequences. Of the protein-coding genes, 305 are exclusive to S. acidocaldarius and 866 are specific to the Sulfolobus genus. Moreover, 82 genes for untranslated RNAs were identified and annotated. Owing to the probable absence of active autonomous and nonautonomous mobile elements, the genome stability and organization of S. acidocaldarius differ radically from those of Sulfolobus solfataricus and Sulfolobus tokodaii. The S. acidocaldarius genome contains an integrated, and probably encaptured, pARN-type conjugative plasmid which may facilitate intercellular chromosomal gene exchange in S. acidocaldarius. Moreover, it contains genes for a characteristic restriction modification system, a UV damage excision repair system, thermopsin, and an aromatic ring dioxygenase, all of which are absent from genomes of other Sulfolobus species. However, it lacks genes for some of their sugar transporters, consistent with it growing on a more limited range of carbon sources. These results, together with the many newly identified protein-coding genes for Sulfolobus, are incorporated into a public Sulfolobus database which can be accessed at http://dac.molbio.ku.dk/dbs/Sulfolobus.  相似文献   

4.
Microbial genomes encompass a sizable fraction of poorly characterized, narrowly spread fast-evolving genes. Using sensitive methods for sequences comparison and protein structure prediction, we performed a detailed comparative analysis of clusters of such genes, which we denote “dark matter islands”, in archaeal genomes. The dark matter islands comprise up to 20 % of archaeal genomes and show remarkable heterogeneity and diversity. Nevertheless, three classes of entities are common in these genomic loci: (a) integrated viral genomes and other mobile elements; (b) defense systems, and (c) secretory and other membrane-associated systems. The dark matter islands in the genome of thermophiles and mesophiles show similar general trends of gene content, but thermophiles are substantially enriched in predicted membrane proteins whereas mesophiles have a greater proportion of recognizable mobile elements. Based on this analysis, we predict the existence of several novel groups of viruses and mobile elements, previously unnoticed variants of CRISPR-Cas immune systems, and new secretory systems that might be involved in stress response, intermicrobial conflicts and biogenesis of novel, uncharacterized membrane structures.  相似文献   

5.
The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re-annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.  相似文献   

6.
7.
8.
Five short interspersed repetitive elements (SINEs) were found fortuitously in the introns of a steroid hormone receptor AaHR3-2 gene of the yellow fever mosquito, Aedes aegypti, constituting a novel family of tRNA-related SINEs named Feilai. In addition, nine other Feilai elements were found in currently available sequences in Ae. aegypti, six of which were also near genes. Approximately 5.9 x 10(4) copies of Feilai were present in Ae. aegypti, equivalent to 2% of the entire genome. An additional 35 Feilai elements were isolated from a genomic library. Of the total 49 Feilai elements, 20 were full-length. Sequence comparisons and phylogenetic analyses of the full-length elements strongly suggest that there are at least two subfamilies within the Feilai family. There is a high degree of conservation within the two subfamilies. However, sequence divergence between the subfamilies, along with the presence of highly degenerate Feilai elements, suggests that Feilai is likely a diverse family of SINEs that has existed in Ae. aegypti for a long time. Many Feilai elements were closely associated with other transposons, especially with fragments of non-LTR retrotransposons and miniature inverted-repeat transposable elements. The 500-bp sequences immediately flanking a Feilai element were highly A + T-rich, which is consistent with the fact that no Feilai has been found in the coding regions of genes. It is likely that the highly reiterated and interspersed Feilai elements are partially responsible for the pattern of short-period interspersion of the Ae. aegypti genome. The evolutionary relationship between Feilai and the Ae. aegypti genome is likely complex.  相似文献   

9.
Archaea have been shown to produce isoprenoids from mevalonate; however, genome analysis has failed to identify several genes in the mevalonate pathway on the basis of sequence similarity. A predicted archaeal kinase, coded for by the MJ0044 gene, was associated with other mevalonate pathway genes in the archaea and was predicted to be the "missing" phosphomevalonate kinase. The MJ0044-derived protein was tested for phosphomevalonate kinase activity and was found not to catalyze this reaction. The MJ0044 gene product was found to phosphorylate isopentenyl phosphate, generating isopentenyl diphosphate. Unlike other known kinases associated with isoprene biosynthesis, Methanocaldococcus jannaschii isopentenyl phosphate kinase is predicted to be a member of the aspartokinase superfamily.  相似文献   

10.
11.
12.
The genes for the acetate-activating enzymes, acetate kinase and phosphotransacetylase (ack and pta), from Methanosarcina thermophila TM-1 were cloned and sequenced. Both genes are present in only one copy per genome, with the pta gene adjacent to and upstream of the ack gene. Consensus archaeal promoter sequences are found upstream of the pta coding region. The pta and ack genes encode predicted polypeptides with molecular masses of 35,198 and 44,482 Da, respectively. A hydropathy plot of the deduced phosphotransacetylase sequence indicates that it is a hydrophobic polypeptides; however, no membrane-spanning domains are evident. Comparison of the amino acid sequences deduced from the M. thermophila and Escherichia coli ack genes indicate similar subunit molecular weights and 44% identity (60% similarity). The comparison also revealed the presence of several conserved arginine, cysteine, and glutamic acid residues. Arginine, cysteine, and glutamic acid residues have previously been implicated at or near the active site of the E. coli acetate kinase. The pta and ack genes were hyperexpressed in E. coli, and the overproduced enzymes were purified to homogeneity with specific activities higher than those of the enzymes previously purified from M. thermophila. The overproduced phosphotransacetylase and acetate kinase migrated at molecular masses of 37,000 and 42,000 Da, respectively. The activity of the acetate kinase is optimal at 65 degrees C and is protected from thermal inactivation by ATP. Diethylpyrocarbonate and phenylglyoxal inhibited acetate kinase activity in a manner consistent with the presence of histidine and arginine residues at or near the active site; however, the thiol-directed reagents 5,5'-dithiobis (2-nitrobenzoic acid) and N-ethylmaleimide were ineffective.  相似文献   

13.
14.
15.
16.
17.
18.
Proviral regions have been identified in the genomes of many haloarchaea, but only a few archaeal halophilic temperate viruses have been studied. Here, we report a new virus, SNJ2, originating from archaeal strain Natrinema sp. J7‐1. We demonstrate that this temperate virus coexists with SNJ1 virus and is dependent on SNJ1 for efficient production. Here, we show that SNJ1 is an icosahedral membrane‐containing virus, whereas SNJ2 is a pleomorphic one. Instead of producing progeny virions and forming plaques, SNJ2 integrates into the host tRNAMet gene. The virion contains a discontinuous, circular, double‐stranded DNA genome of 16 992 bp, in which both nicks and single‐stranded regions are present preceded by a ‘GCCCA’ motif. Among 25 putative SNJ2 open reading frames (ORFs), five of them form a cluster of conserved ORFs homologous to archaeal pleolipoviruses isolated from hypersaline environments. Two structural protein encoding genes in the conserved cluster were verified in SNJ2. Furthermore, SNJ2‐like proviruses containing the conserved gene cluster were identified in the chromosomes of archaea belonging to 10 different genera. Comparison of SNJ2 and these proviruses suggests that they employ a similar integration strategy into a tRNA gene.  相似文献   

19.
The presence and distribution of CRISPR (clustered regularly interspaced short palindrome repeat) elements in the archaeal order Thermococcales were analyzed. Four complete genome sequences from the speciesPyrococcus abyssi, P. furiosus, P. horikoshii, andThermococcus kodakaraensis were studied. A fragment of the genome ofP. furiosus was flanked by CRISPR elements upstream and by a single element downstream. The composition of the gene sequences contained in this genome fragment (positions 699013 to 855319) showed significant differences from the other genes in theP. furiosus genome. Differences were observed in the GC content at the third codon positions and the frequency of codon usage between the genes located in the analyzed fragment and the other genes in theP. furiosus genome. These results represent the first evidence suggesting that repeated CRISPR elements can be involved in horizontal gene transfer and genomic differentiation of hyperthermophilic Archaea.  相似文献   

20.
Tetrachloroethene (PCE) and trichloroethene (TCE) are prevalent groundwater contaminants that can be completely reductively dehalogenated by some "Dehalococcoides" organisms. A Dehalococcoides-organism-containing microbial consortium (referred to as ANAS) with the ability to degrade TCE to ethene, an innocuous end product, was previously enriched from contaminated soil. A whole-genome photolithographic microarray was developed based on the genome of "Dehalococcoides ethenogenes" 195. This microarray contains probes designed to hybridize to >99% of the predicted protein-coding sequences in the strain 195 genome. DNA from ANAS was hybridized to the microarray to characterize the genomic content of the ANAS enrichment. The microarray results revealed that the genes associated with central metabolism, including an apparently incomplete carbon fixation pathway, cobalamin-salvaging system, nitrogen fixation pathway, and five hydrogenase complexes, are present in both strain 195 and ANAS. Although the gene encoding the TCE reductase, tceA, was detected, 13 of the 19 reductive dehalogenase genes present in strain 195 were not detected in ANAS. Additionally, 88% of the genes in predicted integrated genetic elements in strain 195 were not detected in ANAS, consistent with these elements being genetically mobile. Sections of the tryptophan operon and an operon encoding an ABC transporter in strain 195 were also not detected in ANAS. These insights into the diversity of Dehalococcoides genomes will improve our understanding of the physiology and evolution of these bacteria, which is essential in developing effective strategies for the bioremediation of PCE and TCE in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号