首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The differential adhesion hypothesis (DAH), advanced in the 1960s, proposed that the liquid-like tissue-spreading and cell segregation phenomena of development arise from tissue surface tensions that in turn arise from differences in intercellular adhesiveness. Our earlier measurements of liquid-like cell aggregate surface tensions have shown that, without exception, a cell aggregate of lower surface tension tends to envelop one of higher surface tension to which it adheres. We here measure the surface tensions of L cell aggregates transfected to express N-, P- or E-cadherin in varied, measured amounts. We report that in these aggregates, in which cadherins are essentially the only cell-cell adhesion molecules, the aggregate surface tensions are a direct, linear function of cadherin expression level. Taken together with our earlier results, the conclusion follows that the liquid-like morphogenetic cell and tissue rearrangements of cell sorting, tissue spreading and segregation represent self-assembly processes guided by the diminution of adhesive-free energy as cells tend to maximize their mutual binding. This conclusion relates to the physics governing these morphogenetic phenomena and applies independently of issues such as the specificities of intercellular adhesives.  相似文献   

2.
Differential adhesion in morphogenesis: a modern view   总被引:4,自引:0,他引:4  
The spreading of one embryonic tissue over another, the sorting out of their cells when intermixed and the formation of intertissue boundaries respected by the motile border cells all have counterparts in the behavior of immiscible liquids. The 'differential adhesion hypothesis' (DAH) explains these liquid-like tissue behaviors as consequences of the generation of tissue surface and interfacial tensions arising from the adhesion energies between motile cells. The experimental verification of the DAH, the recent computational models simulating adhesion-mediated morphogenesis, and the evidence concerning the role of differential adhesion in a number of morphodynamic events, including teleost epiboly, the specification of boundaries between rhombomeres in the developing vertebrate hindbrain, epithelial-mesenchymal transitions in embryos, and malignant invasion are reviewed here.  相似文献   

3.
Cell sorting is a dynamical cooperative phenomenon that is fundamental for tissue morphogenesis and tissue homeostasis. According to Steinberg's differential adhesion hypothesis, the structure of sorted cell aggregates is determined by physical characteristics of the respective tissues, the tissue surface tensions. Steinberg postulated that tissue surface tensions result from quantitative differences in intercellular adhesion. Several experiments in cell cultures as well as in developing organisms support this hypothesis.The question of how tissue surface tension might result from differential adhesion was addressed in some theoretical models. These models describe the cellular interdependence structure once the temporal evolution has stabilized. In general, these models are capable of reproducing sorted patterns. However, the model dynamics at the cellular scale are defined implicitly and are not well-justified. The precise mechanism describing how differential adhesion generates the observed sorting kinetics at the tissue level is still unclear.It is necessary to formulate the concepts of cell level kinetics explicitly. Only then it is possible to understand the temporal development at the cellular and tissue scales. Here we argue that individual cell mobility is reduced the more the cells stick to their neighbors. We translate this assumption into a precise mathematical model which belongs to the class of stochastic interacting particle systems. Analyzing this model, we are able to predict the emergent sorting behavior at the population level. We describe qualitatively the geometry of cell segregation depending on the intercellular adhesion parameters. Furthermore, we derive a functional relationship between intercellular adhesion and surface tension and highlight the role of cell mobility in the process of sorting. We show that the interaction between the cells and the boundary of a confining vessel has a major impact on the sorting geometry.  相似文献   

4.
Using a dual pipette assay that measures the force required to separate adherent cell doublets, we have quantitatively compared intercellular adhesiveness mediated by Type I (E- or N-cadherin) or Type II (cadherin-7 or -11) cadherins. At similar cadherin expression levels, cells expressing Type I cadherins adhered much more rapidly and strongly than cells expressing Type II cadherins. Using chimeric cadherins, we found that the extracellular domain exerts by far the dominant effect on cell adhesivity, that of E-cadherin conferring high adhesivity, and that of cadherin-7 conferring low adhesivity. Type I cadherins were incorporated to a greater extent into detergent-insoluble cytoskeletal complexes, and their cytoplasmic tails were much more effective in disrupting strong adherent junctions, suggesting that Type II cadherins form less stable complexes with beta-catenin. The present study demonstrates compellingly, for the first time, that cadherins are dramatically different in their ability to promote intercellular adhesiveness, a finding that has profound implications for the regulation of tissue morphogenesis.  相似文献   

5.
Classical cadherins accumulate at cell-cell contacts as a characteristic response to productive adhesive ligation. Such local accumulation of cadherins is a developmentally regulated process that supports cell adhesiveness and cell-cell cohesion. Yet the molecular effectors responsible for cadherin accumulation remain incompletely understood. We now report that Myosin 2 is critical for cells to concentrate E-cadherin at cell-cell contacts. Myosin 2 is found at cadherin-based cell-cell contacts and its recruitment requires E-cadherin activity. Indeed, both Myosin 2 recruitment and its activation were stimulated by E-cadherin homophilic ligation alone. Inhibition of Myosin 2 activity by blebbistatin or ML-7 rapidly impaired the ability of cells to concentrate E-cadherin at adhesive contacts, accompanied by decreased cadherin-based cell adhesiveness. The total surface expression of cadherins was unaffected, suggesting that Myosin 2 principally regulates the regional distribution of cadherins at the cell surface. The recruitment of Myosin 2 to cadherin contacts, and its activation, required Rho kinase; furthermore, inhibition of Rho kinase signaling effectively phenocopied the effects of Myosin 2 inhibition. We propose that Myosin 2 is a key effector of Rho-Rho kinase signaling that regulates cell-cell adhesion by determining the ability of cells to concentrate cadherins at contacts in response to homophilic ligation.  相似文献   

6.
Abstract

Desmosomes are intercellular junctions that provide strong adhesion or hyper-adhesion in tissues. Here, we discuss the molecular and structural basis of this with particular reference to the desmosomal cadherins (DCs), their isoforms and evolution. We also assess the role of DCs as regulators of epithelial differentiation. New data on the role of desmosomes in development and human disease, especially wound healing and pemphigus, are briefly discussed, and the importance of regulation of the adhesiveness of desmosomes in tissue dynamics is considered.  相似文献   

7.
HeLa cells harvested from density-inhibited or fast growing suspension cultures, were incubated in NaCl solutions of different tonicity. Cell size enlargement produced by hypotonicity is accompanied by an increased sedimentation rate of the density-inhibited cells, whereas no appreciable change is observed in the sedimentation rate of fast growing cells. Hypotonicity also has no effect on the sedimentation rate of density-inhibited cells which previously had been treated with neuraminidase or trypsin. It is shown that the effect of hypotonicity on density-inhibited cells cannot be ascribed to release of cell surface sialic acids during hypotonic incubation. Several arguments are presented which indicate that the changes in sedimentation rate, as measured in the rotating suspension system, are not the direct consequence of the alterations in cell size, but rather must be attributed to differences in intercellular adhesiveness resulting from the size alterations. Analogous changes in intercellular adhesiveness and cell size are shown to occur during growth in isotonic suspension culture. The results can be explained by assuming that changes in cell size affect the intercellular adhesiveness by modifying the extent to which cell surface sialic acids counteract adhesion.  相似文献   

8.
The actions of cell adhesion molecules, in particular, cadherins during embryonic development and morphogenesis more generally, regulate many aspects of cellular interactions, regulation and signaling. Often, a gradient of cadherin expression levels drives collective and relative cell motions generating macroscopic cell sorting. Computer simulations of cell sorting have focused on the interactions of cells with only a few discrete adhesion levels between cells, ignoring biologically observed continuous variations in expression levels and possible nonlinearities in molecular binding. In this paper, we present three models relating the surface density of cadherins to the net intercellular adhesion and interfacial tension for both discrete and continuous levels of cadherin expression. We then use then the Glazier-Graner-Hogeweg (GGH) model to investigate how variations in the distribution of the number of cadherins per cell and in the choice of binding model affect cell sorting. We find that an aggregate with a continuous variation in the level of a single type of cadherin molecule sorts more slowly than one with two levels. The rate of sorting increases strongly with the interfacial tension, which depends both on the maximum difference in number of cadherins per cell and on the binding model. Our approach helps connect signaling at the molecular level to tissue-level morphogenesis.  相似文献   

9.
Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail–tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.  相似文献   

10.
Cadherins are a family of intercellular adhesion receptors. Produced as inactive precursors, they become functional adhesion molecules after proteolytic cleavage by subtilisin-like pro-protein convertases (PCs). Owing to their activation and assembly into multiprotein adhesion complexes at sites of cell contacts, adhesion-competent cadherins are prerequisite for tissue integrity. In recent years evidence has accumulated that intercellular junctions not only provide mechanical linkage, but in addition are potent modulators of signalling cascades. This infers a biological role to intercellular adhesion complexes that is significantly more complex and powerful. Currently, the broad implications of disturbances in somatic tissue adhesion components are only just beginning to emerge. Prominent examples of adhesion defects include autoimmune diseases, or tumour invasion and metastasis and malignant transformation. This review reports on our current knowledge of cadherin function and their maturation by pro-protein convertases, and puts special emphasis on the consequences of pro-protein convertase inhibition for epithelial tissue homeostasis.  相似文献   

11.
Abstract

Cadherin adhesion receptors are fundamental determinants of tissue organization in health and disease. Increasingly, we have come to appreciate that classical cadherins exert their biological actions through active cooperation with the contractile actin cytoskeleton. Rather than being passive resistors of detachment forces, cadherins can regulate the assembly and mechanics of the contractile apparatus itself. Moreover, coordinate spatial patterning of adhesion and contractility is emerging as a determinant of morphogenesis. Here we review recent developments in cadherins and actin cytoskeleton cooperativity, by focusing on E-cadherin adhesive patterning in the epithelia. Next, we discuss the underlying principles of cellular rearrangement during Drosophila germband extension and epithelial cell extrusion, as models of how planar and apical–lateral patterns of contractility organize tissue architecture.  相似文献   

12.
We compared the spontaneous behaviour (motility, adhesiveness, locomotion) and the chemotactic responses of exudate and blood-borne neutrophils. Directional locomotion of exudate neutrophils in 2% HSA-Gey's towards exudate fluid was not significantly changed, the response to activated autologous plasma diminished, and that to f-Met-Leu-Phe (10(-9) M) increased in comparison with blood-borne cells. The spontaneous behaviour of exudate cells in 2% HSA-Gey's (no gradient) differed markedly from that of blood-borne cells. In tissue culture medium (2% HSA-Gey's) exudate cells showed heightened motility in suspension and greater adhesiveness to glass substrata. These differences were eliminated by culturing the cells in their physiological media (i.e. plasma or exudate fluid). In contrast to blood-borne cells, exudate neutrophils tended to aggregate spontaneously. There was no correlation between neutrophil aggregation and adhesion to glass substrata of exudate cells in exudate fluid.  相似文献   

13.
Desmoglein 1 (Dsg1) is a component of desmosomes present in the upper epidermis and can be targeted by autoimmune antibodies or bacterial toxins, resulting in skin blistering diseases. These defects in tissue integrity are believed to result from compromised desmosomal adhesion; yet, previous attempts to directly test the adhesive roles of desmosomal cadherins using normally non-adherent L cells have yielded mixed results. Here, two complementary approaches were used to better resolve the molecular determinants for Dsg1-mediated adhesion: (1) a tetracycline-inducible system was used to modulate the levels of Dsg1 expressed in L cell lines containing desmocollin 1 (Dsc1) and plakoglobin (PG) and (2) a retroviral gene delivery system was used to introduce Dsg1 into normal human epidermal keratinocytes (NHEK). By increasing Dsg1 expression relative to Dsc1 and PG, we were able to demonstrate that the ratio of Dsg1:Dsc1 is a critical determinant of desmosomal adhesion in fibroblasts. The distribution of Dsg1 was organized at areas of cell-cell contact in the multicellular aggregates that formed in these suspension cultures. Similarly, the introduction of Dsg1 into NHEKs was capable of increasing the aggregation of single cell suspensions and further enhanced the adhesive strength of intact epithelial sheets. Endogenous Dsc1 levels were also increased in NHEKs containing Dsg1, providing further support for the coordination of these two desmosomal cadherins in regulating adhesive structures. These Dsg1-mediated effects on intercellular adhesion were directly related to the presence of an intact extracellular domain as ETA, a toxin that specifically cleaves this desmosomal cadherin, inhibited adhesion in both fibroblasts and keratinocytes. Collectively, these observations demonstrate that Dsg1 promotes the formation of intercellular adhesion complexes and suggest that the relative level of Dsg and Dsc expressed at the cell surface regulates this adhesive process.  相似文献   

14.
Summary HeLa cells harvested from density-inhibited or fast growing suspension cultures, were incubated in NaCl solutions of different tonicity. Cell size enlargement produced by hypotonicity is accompanied by an increased sedimentation rate of the density-inhibited cells, whereas no appreciable change is observed in the sedimentation rate of fast growing cells. Hypotonicity also has no effect on the sedimentation rate of density-inhibited cells which previously had been treated with neuraminidase or trypsin. It is shown that the effect of hypotonicity on density-inhibited cells cannot be ascribed to release of cell surface sialic acids during hypotonic incubation. Several arguments are presented which indicate that the changes in sedimentation rate, as measured in the rotating suspension system, are not the direct consequence of the alterations in cell size, but rather must be attributed to differences in intercellular adhesiveness resulting from the size alterations. Analogous changes in intercellular adhesiveness and cell size are shown to occur during growth in isotonic suspension culture. The results can be explained by assuming that changes in cell size affect the intercellular adhesiveness by modifying the extent to which cell surface sialic acids counteract adhesion.  相似文献   

15.
Dynamics of intercellular communication during melanoma development   总被引:4,自引:0,他引:4  
Melanoma development involves processes determined collectively by various microenvironmental factors, among which intercellular communication has drawn increased attention. Cell-cell crosstalk mediated by cadherins and connexins results in coordinated regulation of cell growth, differentiation, apoptosis and migration. Abnormal expression of adhesion receptors and dysregulated intercellular communication appears to drive tumor development and progression.  相似文献   

16.
《The Journal of cell biology》1994,126(6):1353-1360
A novel member of the cadherin family of cell adhesion molecules has been characterized by cloning from rat liver, sequencing of the corresponding cDNA, and functional analysis after heterologous expression in nonadhesive S2 cells. cDNA clones were isolated using a polyclonal antibody inhibiting Ca(2+)-dependent intercellular adhesion of hepatoma cells. As inferred from the deduced amino acid sequence, the novel molecule has homologies with E-, P-, and N-cadherins, but differs from these classical cadherins in four characteristics. Its extracellular domain is composed of five homologous repeated domains instead of four characteristic for the classical cadherins. Four of the five domains are characterized by the sequence motifs DXNDN and DXD or modifications thereof representing putative Ca(2+)-binding sites of classical cadherins. In its NH2-terminal region, this cadherin lacks both the precursor segment and the endogenous protease cleavage site RXKR found in classical cadherins. In the extracellular EC1 domain, the novel cadherin contains an AAL sequence in place of the HAV sequence motif representing the common cell adhesion recognition sequence of E-, P-, and N-cadherin. In contrast to the conserved cytoplasmic domain of classical cadherins with a length of 150-160 amino acid residues, that of the novel cadherin has only 18 amino acids. Examination of transfected S2 cells showed that despite these structural differences, this cadherin mediates intercellular adhesion in a Ca(2+)-dependent manner. The novel cadherin is solely expressed in liver and intestine and was, hence, assigned the name LI-cadherin. In these tissues, LI- cadherin is localized to the basolateral domain of hepatocytes and enterocytes. These results suggest that LI-cadherin represents a new cadherin subtype and may have a role in the morphological organization of liver and intestine.  相似文献   

17.
Desmosomal cadherins mediate intercellular adhesion and control epithelial homeostasis. Recent studies show that proteinases play an important role in the pathobiology of cancer by targeting epithelial intercellular junction proteins such as cadherins. Here we describe the proinflammatory cytokine-induced activation of matrix metalloproteinase 9 and a disintegrin and metalloproteinase domain–containing protein 10, which promote the shedding of desmosomal cadherin desmoglein-2 (Dsg2) ectodomains in intestinal epithelial cells. Epithelial exposure to Dsg2 ectodomains compromises intercellular adhesion by promoting the relocalization of endogenous Dsg2 and E-cadherin from the plasma membrane while also promoting proliferation by activation of human epidermal growth factor receptor 2/3 signaling. Cadherin ectodomains were detected in the inflamed intestinal mucosa of mice with colitis and patients with ulcerative colitis. Taken together, our findings reveal a novel response pathway in which inflammation-induced modification of columnar epithelial cell cadherins decreases intercellular adhesion while enhancing cellular proliferation, which may serve as a compensatory mechanism to promote repair.  相似文献   

18.
19.
AIMS: To investigate aggregation and adhesiveness of Lactobacillus acidophilus M92 to porcine ileal epithelial cells in vitro, and the influence of cell surface proteins on autoaggregation and adhesiveness of this strain. METHODS AND RESULTS: Lactobacillus acidophilus M92 exhibits a strong autoaggregating phenotype and manifests a high degree of hydrophobicity determined by microbial adhesion to xylene. Aggregation and hydrophobicity were abolished upon exposure of the cells to pronase and pepsin. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of cell surface proteins revealed the presence of potential surface layer (S-layer) proteins, approximated at 45 kDa, in L. acidophilus M92. The relationship between autoaggregation and adhesiveness to intestinal tissue was investigated by observing the adhesiveness of L. acidophilus M92 to porcine ileal epithelial cells. Removal of the S-layer proteins by extraction with 5 mol l-1 LiCl reduced autoaggregation and in vitro adhesion of this strain. CONCLUSIONS: These results demonstrate that there is relationship between autoaggregation and adhesiveness ability of L. acidophilus M92, mediated by proteinaceous components on the cell surface. SIGNIFICANCE AND IMPACT OF THE STUDY: This investigation has shown that L. acidophilus M92 has the ability to establish in the human gastrointestinal tract, which is an important determinant in the choice of probiotic strains.  相似文献   

20.
Desmosomes are intercellular junctions of epithelia and are of widespread importance in the maintenance of tissue architecture. We provide evidence that desmosomal adhesion has a function in epithelial morphogenesis and cell-type-specific positioning. Blocking peptides corresponding to the cell adhesion recognition (CAR) sites of desmosomal cadherins block alveolar morphogenesis by epithelial cells from mammary lumen. Desmosomal CAR-site peptides also disrupt positional sorting of luminal and myoepithelial cells in aggregates formed by the reassociation of isolated cells. We demonstrate that desmosomal cadherins and E-cadherin are comparably involved in epithelial morphoregulation. The results indicate a wider role for desmosomal adhesion in morphogenesis than has previously been considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号