共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Mice lacking MHC class II molecules 总被引:47,自引:0,他引:47
We have produced mice that lack major histocompatibility complex class II antigens, permitting us to evaluate the role of these molecules in diverse aspects of T and B cell differentiation. The mutant mice show near-complete elimination of CD4+ T lymphocytes from the spleen and lymph nodes; the few remaining CD4-positive cells are preferentially localized to B cell follicles. Surprisingly, substantial numbers of CD4 single-positive cells reside in the thymus; however, these are not mature thymocytes as we currently recognize them. B lymphocytes occur in normal numbers and are capable of terminal differentiation to plasma cells. Nevertheless, several aberrations in the B cell compartment are demonstrable: a lack of germinal centers, fewer IgM+IgD+ cells in certain individuals, reduced production of serum IgG1, and complete inability to respond to T-dependent antigens. In short, the class II-negative mice have confirmed some old ideas about lymphocyte differentiation, but have provided some surprises. 相似文献
3.
Antigenic peptide is presented to a T-cell receptor through the formation of a stable complex with a Major Histocompatibility Complex (MHC) molecule. Various predictive algorithms have been developed to estimate a peptide's capacity to form a stable complex with a given MHC Class II allele, a technique integral to the strategy of vaccine design. These have previously incorporated such computational techniques as quantitative matrices and neural networks. We have developed a novel predictive technique that uses molecular modeling of predetermined crystal structures to estimate the stability of an MHC Class II peptide complex. This is the 1st structure-based technique, as previous methods have been based on binding data. ROC curves are used to quantify the accuracy of the molecular modeling technique. The novel predictive technique is found to be comparable with the best predictive software currently available. 相似文献
4.
L S Arneson J F Katz M Liu A J Sant 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(12):6939-6946
MHC class II molecules associate with peptides through pocket interactions and the formation of hydrogen bonds. The current paradigm suggests that the interaction of side chains of the peptide with pockets in the class II molecule is responsible for the formation of stable class II-peptide complexes. However, recent evidence has shown that the formation of hydrogen bonds between genetically conserved residues of the class II molecule and the main chain of the peptide contributes profoundly to peptide stability. In this study, we have used I-A(k), a class II molecule known to form strong pocket interactions with bound peptides, to probe the general importance of hydrogen bond integrity in peptide acquisition. Our studies have revealed that abolishing hydrogen bonds contributed by positions 81 or 82 in the beta-chain of I-A(k) results in class II molecules that are internally degraded when trafficked through proteolytic endosomal compartments. The presence of high-affinity peptides derived from either endogenous or exogenous sources protects the hydrogen bond-deficient variant from intracellular degradation. Together, these data indicate that disruption of the potential to form a complete hydrogen bond network between MHC class II molecules and bound peptides greatly diminishes the ability of class II molecules to bind peptides. The subsequent failure to stably acquire peptides leads to protease sensitivity of empty class II molecules, and thus to proteolytic degradation before export to the surface of APCs. 相似文献
5.
DA6.231 and DA6.164 are mouse monoclonal antibodies that immunoprecipitate HLA-DR-like p34,29 glycoprotein dimers from surface- and metabolically-labeled cells. On lymphoblastoid cell lines the distribution of the 231 epitope is completely nonpolymorphic, while the 164 epitope is present on all cells except on those that are DR7 homozygous. Binding-inhibition studies show that the 231 and 164 epitopes are spatially close to each other when present on the same molecule. The mutual inhibition pattern and the absence of the 164 epitope from the 231+ cells of a few leukemia patients suggest, however, that 231 and 164 epitopes are not invariably present together. Most DR-positive cells possess 231– 164+ and 231+ 164– class 11 molecules in approximately a 2:1 ratio. This has been confirmed by immune depletion studies. Thus DA6.231 appears to define a supralocus epitope. The 164 epitope may be a marker for a subset of class 11 molecules exhibiting differential expression on various cell types immortalized by malignant transformation. 相似文献
6.
Pedersen LE Harndahl M Rasmussen M Lamberth K Golde WT Lund O Nielsen M Buus S 《Immunogenetics》2011,63(12):821-834
In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules. These are highly
polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating CTLs. The polymorphism
of the MHC effectively individualizes the immune response of each member of the species. We have recently developed efficient
methods to generate recombinant human MHC-I (also known as human leukocyte antigen class I, HLA-I) molecules, accompanying
peptide-binding assays and predictors, and HLA tetramers for specific CTL staining and manipulation. This has enabled a complete
mapping of all HLA-I specificities (“the Human MHC Project”). Here, we demonstrate that these approaches can be applied to
other species. We systematically transferred domains of the frequently expressed swine MHC-I molecule, SLA-1*0401, onto a
HLA-I molecule (HLA-A*11:01), thereby generating recombinant human/swine chimeric MHC-I molecules as well as the intact SLA-1*0401
molecule. Biochemical peptide-binding assays and positional scanning combinatorial peptide libraries were used to analyze
the peptide-binding motifs of these molecules. A pan-specific predictor of peptide–MHC-I binding, NetMHCpan, which was originally developed to cover the binding specificities of all known HLA-I molecules, was successfully used to
predict the specificities of the SLA-1*0401 molecule as well as the porcine/human chimeric MHC-I molecules. These data indicate
that it is possible to extend the biochemical and bioinformatics tools of the Human MHC Project to other vertebrate species. 相似文献
7.
At the surface of antigen-presenting cells MHC class I and class II molecules present peptides to respectively CD8+ and CD4+ T cells. MHC class I molecules acquire peptides right after synthesis in the endoplasmic reticulum. MHC class II molecules do not acquire peptides in the endoplasmic reticulum but instead associate with a third chain, the invariant chain which impedes peptide binding. Subsequently the invariant chain takes MHC class II molecules to the endosomal/lysosomal compartment thanks to a targeting signal retained in its cytoplasmic tail. It then dissociates from the MHC class II dimer to allow it to bind peptides. 相似文献
8.
We have examined trafficking of major histocompatibility complex (MHC) class II molecules in human B cells exposed to concanamycin B, a highly specific inhibitor of the vacuolar H(+)-ATPases required for acidification of the vacuolar system and for early to late endosomal transport. Neutralization of vacuolar compartments prevents breakdown of the invariant chain (Ii) and blocks conversion of MHC class II molecules to peptide-loaded, SDS-stable alpha beta dimers. Ii remains associated with alpha beta and this complex accumulates internally, as ascertained biochemically and by morphological methods. In concanamycin B-treated cells, a slow increase (> 20-fold) in surface expression of Ii, mostly complexed with alpha beta, is detected. This surface-disposed fraction of alpha beta Ii is nevertheless a minor population that reaches the cell surface directly, or is routed via early endosomes as intermediary stations. In inhibitor-treated cells, the bulk of newly synthesized alpha beta Ii is no longer accessible to fluid phase endocytic markers. It is concluded that the majority of alpha beta Ii is targeted directly from the trans-Golgi network to the compartment for peptide loading, bypassing the cell surface and early endosomes en route to the endocytic pathway. 相似文献
9.
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers that present antigenic peptides to T cells. Expression of these molecules in soluble form has met limited success, presumably due to their large size, heterodimeric structure and the presence of multiple disulfide bonds. Here we have used directed evolution and yeast surface display to engineer soluble single-chain human lymphocyte antigen (HLA) class II MHC DR1 molecules without covalently attached peptides (scDR1alphabeta). Specifically, a library of mutant scDR1alphabeta molecules was generated by random mutagenesis and screened by fluorescence activated cell sorting (FACS) with DR-specific conformation-sensitive antibodies, yielding three well-expressed and properly folded scDR1alphabeta variants displayed on the yeast cell surface. Detailed analysis of these evolved variants and a few site-directed mutants generated de novo indicated three amino acid residues in the beta1 domain are important for the improved protein folding yield. Further, molecular modeling studies suggested these mutations might increase the protein folding efficiency by improving the packing of a hydrophobic core in the alpha1beta1 domain of DR1. The scDR1alphabeta mutants displayed on the yeast cell surface are remarkably stable and bind specifically to DR-specific peptide HA(306-318) with high sensitivity and rapid kinetics in flow cytometric assays. Moreover, since the expression, stability and peptide-binding properties of these mutants can be directly assayed on the yeast cell surface using immuno-fluorescence labeling and flow cytometry, time-consuming purification and refolding steps of recombinant DR1 molecules are eliminated. Therefore, these scDR1alphabeta molecules will provide a powerful technology platform for further design of DR1 molecules with improved peptide-binding specificity and affinity for therapeutic and diagnostic applications. The methods described here should be generally applicable to other class II MHC molecules and also class I MHC molecules for their functional expression, characterization and engineering. 相似文献
10.
M Le Meur C Waltzinger P Gerlinger C Benoist D Mathis 《Journal of immunology (Baltimore, Md. : 1950)》1989,142(1):323-327
Studies on cell lines transfected with MHC class II genes have revealed important limitations on the assembly of haplotype-mismatched A alpha:A beta complexes. These findings led to the speculation that pairing restrictions, if applied in a cell type-specific fashion, might be involved in various autoimmune phenomena. We have investigated pairing restrictions in vivo by analyzing transgenic mice that carry an Ak alpha chain, an Ak beta chain, or the Ak alpha:Ak beta complex on an H-2b or H-2s background. Our conclusion is that the assembly of haplotype-mismatched A alpha:A beta complexes is limited in vivo, and that this is equally true for all cell types examined, regardless of their role in the immune response. 相似文献
11.
During biosynthesis, MHC class II molecules travel through the endocytic pathway and interact with antigenic peptides before their stable insertion in the plasma membrane. The process of class II association with these peptides and their final deposition at the cell surface are essential steps in boosting specific antibody responses. Therefore, the study of class II molecules is important in understanding how cell-biological events can direct an immune response. 相似文献
12.
A single polymorphic residue within the peptide-binding cleft of MHC class I molecules determines spectrum of tapasin dependence 总被引:2,自引:0,他引:2
Different HLA class I alleles display a distinctive dependence on tapasin for surface expression and Ag presentation. In this study, we show that the tapasin dependence of HLA class I alleles correlates to the nature of the amino acid residues present at the naturally polymorphic position 114. The tapasin dependence of HLA class I alleles bearing different residues at position 114 decreases in the order of acidity, with high tapasin dependence for acidic amino acids (aspartic acid and glutamic acid), moderate dependence for neutral amino acids (asparagine and glutamine), and low dependence for basic amino acids (histidine and arginine). A glutamic acid to histidine substitution at position 114 allows the otherwise tapasin-dependent HLA-B4402 alleles to load high-affinity peptides independently of tapasin and to have surface expression levels comparable to the levels seen in the presence of tapasin. The opposite substitution, histidine to glutamic acid at position 114, is sufficient to change the HLA-B2705 allele from the tapasin-independent to the tapasin-dependent phenotype. Furthermore, analysis of point mutants at position 114 reveals that tapasin plays a principal role in transforming the peptide-binding groove into a high-affinity, peptide-receptive conformation. The natural polymorphisms in HLA class I H chains that selectively affect tapasin-dependent peptide loading provide insights into the functional interaction of tapasin with MHC class I molecules. 相似文献
13.
In B lymphocytes, the processing of exogenous proteins and the subsequent binding of antigenic peptides to class II molecules encoded by the major histocompatibility complex (MHC) occurs most likely within endocytic compartments. To examine the endocytic transport of MHC class II molecules, we used (i) surface iodination followed by internalization, pronase treatment and immunoprecipitation, (ii) in situ iodination of endosomal compartments, and (iii) confocal microscopy to visualize the fate of fluorescence coupled Fab fragments. In murine I-Ak, I-Ek positive B lymphoma cells, cell surface MHC class II molecules are partially protected from pronase digestion after 15 min at 37 degrees C and recycled back to the cell surface within the next 30 min. The fluorescence coupled Fab fragments are delivered to juxtanuclear endocytic compartments in 15 min. In contrast to the murine B cells, L fibroblasts transfected with either I-A alpha beta k or I-E alpha k beta k,d fail to internalize their surface class II molecules. A fraction of class II molecules, however, is still present in endosomal compartments as detected after in situ iodination in L fibroblasts. We conclude that the recipient L fibroblasts lack one or several factors needed for the transport of MHC class II molecules from the cell surface to the endosomes. We suggest that in murine B lymphoma cells, antigenic peptides can gain access to a pool of recycling class II molecules whereas in L cells they meet newly synthesized class II molecules targeted to the endosomal compartments. 相似文献
14.
Capacity of intact proteins to bind to MHC class II molecules 总被引:3,自引:0,他引:3
A Sette L Adorini S M Colon S Buus H M Grey 《Journal of immunology (Baltimore, Md. : 1950)》1989,143(4):1265-1267
Here we have demonstrated that denatured, but not native protein antigens can interact with Ia molecules. Thus, the failure of native antigens to be recognized as such by T cells appears to be at least in part due to a deficient antigen/Ia interaction. These results also support previous observations that some T cells can recognize denatured antigens without a further processing requirement. Moreover, a striking correlation was observed between the in vitro binding pattern of denatured proteins and the pattern of restriction of T cell responses elicited by immunization with the native antigen, raising the possibility that an unfolding step may actually occur early during in vivo processing and influence the final outcome of Ia-restricted T cell responses. 相似文献
15.
J F Kaufman M F Flajnik L Du Pasquier P Riegert 《Journal of immunology (Baltimore, Md. : 1950)》1985,134(5):3248-3257
Class II antigens from the Xenopus laevis MHC (f haplotype) were identified by using a rabbit antihuman class II beta-chain serum (anti-p29boost). This xenoantiserum inhibits bidirectional Xenopus MLR (but not PHA-stimulation), recognizes the same molecules as certain MHC-linked Xenopus alloantisera, and immunoprecipitates class II molecules from Xenopus cells consistent with the tissue distribution of mammalian class II molecules. The Xenopus class II molecules are composed of two different chains, both of which are 30 to 35kD transmembrane glycoproteins. The alpha-chains have some N-terminal sequence homology with mammalian class II alpha-chains (both I-E/DR and I-A/DC); the beta-chains are directly recognized by anti-p29boost and have a markedly increased SDS gel mobility under nonreducing conditions. During biosynthesis, they are noncovalently associated with a number of other chains, including ones at 25kD, 33kD, and 40 to 45kD. The alpha-chains bear three N-linked glycans (two Endo H insensitive in mature material) and the beta-chains bear two (one Endo H insensitive). Unlike most mammalian class II molecules, the deglycosylated beta-chains are significantly larger and more acidic than the alpha-chains. 相似文献
16.
Catlett IM Xie P Hostager BS Bishop GA 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(10):6019-6024
B cells are induced to express CD95 upon interaction with T cells. This interaction renders the B cells sensitive to CD95-mediated apoptosis, but ligation of proviability surface receptors is able to inhibit apoptosis induction. MHC class II is a key molecule required for Ag presentation to Th cells, productive T cell-B cell interaction, and B cell activation. We demonstrate here for the first time that MHC class II ligation also confers a rapid resistance to CD95-induced apoptosis, an affect that does not require de novo protein synthesis. Signaling through class II molecules blocks the activation of caspase 8, but does not affect the association of CD95 and Fas-associated death domain-containing protein. MHC class II ligation thus blocks proximal signaling events in the CD95-mediated apoptotic pathway. 相似文献
17.
There have been many studies demonstrating that a portion of MHC class II molecules reside in detergent-insoluble membrane domains (commonly referred to as lipid rafts). We have proposed that the function of raft association is to concentrate specific MHC class II-peptide complexes in plasma membrane microdomains that can facilitate efficient T cell activation. We now show that MHC class II becomes lipid raft associated before binding antigenic peptides. Using pulse-chase radiolabeling techniques, we find that newly synthesized MHC class II and MHC class II-invariant chain complexes initially reside in a detergent-soluble membrane fraction and acquire detergent insolubility as they traffic to lysosomal Ag processing compartments. Monensin, an inhibitor of protein transport through the Golgi apparatus, blocks association of newly synthesized MHC class II with lipid rafts. Treatment of cells with leupeptin, which inhibits invariant chain degradation, leads to the accumulation of MHC class II in lipid rafts within the lysosome-like Ag-processing compartments. Raft fractionation of lysosomal membranes confirmed the presence of MHC class II in detergent-insoluble microdomains in Ag-processing compartments. These findings indicate that newly synthesized MHC class II complexes are directed to detergent-insoluble lipid raft microdomains before peptide loading, a process that may facilitate the loading of similar peptides on MHC class II complexes in these microdomains. 相似文献
18.
Meyer zu Hörste G Mausberg AK Müller JI Lehmann HC Löber S Gmeiner P Hartung HP Stüve O Korth C Kieseier BC 《PloS one》2011,6(6):e21223
Activation of inflammatory cells is central to the pathogenesis of autoimmune demyelinating diseases of the peripheral nervous system. The novel chimeric compound quinpramine--generated from imipramine and quinacrine--redistributes cholesterol rich membrane domains to intracellular compartments. We studied the immunological and clinical effects of quinpramine in myelin homogenate induced Lewis rat experimental autoimmune neuritis (EAN), a model system for acute human inflammatory neuropathies, such as the Guillain-Barré syndrome. EAN animals develop paresis of all limbs due to autoimmune inflammation of peripheral nerves. Quinpramine treatment ameliorated clinical disease severity of EAN and infiltration of macrophages into peripheral nerves. It reduced expression of MHC class II molecules on antigen presenting cells and antigen specific T cell proliferation both in vitro and in vivo. Quinpramine exerted its anti-proliferatory effect on antigen presenting cells, but not on responder T cells. Our data suggest that quinpramine represents a candidate pharmaceutical for inflammatory neuropathies. 相似文献
19.
Major histocompatibility complex class II (MHC II) molecules are targeted to endocytic compartments, known as MIIC, by the invariant chain (Ii) that is degraded upon arrival in these compartments. MHC II acquire antigenic fragments from endocytosed proteins for presentation at the cell surface. In a unique and complex series of reactions, MHC II succeed in exchanging a remaining fragment of Ii for other protein fragments in subdomains of MIIC before transport to the cell surface. Here, the mechanisms regulating loading and intracellular trafficking of MHC II are discussed. 相似文献
20.
Dolan BP Phelan TP Ilkovitch D Qi L Wade WF Laufer TM Ostrand-Rosenberg S 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(2):907-914
Cell-based tumor vaccines, consisting of MHC class I+ tumor cells engineered to express MHC class II molecules, stimulate tumor-specific CD4+ T cells to mediate rejection of established, poorly immunogenic tumors. Previous experiments have demonstrated that these vaccines induce immunity by functioning as APCs for endogenously synthesized, tumor-encoded Ags. However, coexpression of the MHC class II accessory molecule invariant chain (Ii), or deletion of the MHC class II cytoplasmic domain abrogates vaccine immunogenicity. Recent reports have highlighted the role of lipid microdomains in Ag presentation. To determine whether Ii expression and/or truncation of MHC class II molecules impact vaccine efficacy by altering MHC class II localization to lipid microdomains, we examined the lipid raft affinity of MHC class II molecules in mouse M12.C3 B cell lymphomas and SaI/A(k) sarcoma vaccine cells. Functional MHC class II heterodimers were detected in lipid rafts of both cell types. Interestingly, expression of Ii in M12.C3 cells or SaI/A(k) cells blocked the MHC class II interactions with cell surface lipid rafts. In both cell types, truncation of either the alpha- or beta-chain decreased the affinity of class II molecules for lipid rafts. Simultaneous deletion of both cytoplasmic domains further reduced localization of class II molecules to lipid rafts. Collectively, these data suggest that coexpression of Ii or deletion of the cytoplasmic domains of MHC class II molecules may reduce vaccine efficacy by blocking the constitutive association of MHC class II molecules with plasma membrane lipid rafts. 相似文献