首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Blood flow dynamics in saccular aneurysm models of the basilar artery   总被引:1,自引:0,他引:1  
Blood flow dynamics under physiologically realistic pulsatile conditions plays an important role in the growth, rupture, and surgical treatment of intracranial aneurysms. The temporal and spatial variations of wall pressure and wall shear stress in the aneurysm are hypothesized to be correlated with its continuous expansion and eventual rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This paper describes the flow dynamics in two representative models of a terminal aneurysm of the basilar artery under Newtonian and non-Newtonian fluid assumptions, and compares their hemodynamics with that of a healthy basilar artery. Virtual aneurysm models are investigated numerically, with geometric features defined by beta = 0 deg and beta = 23.2 deg, where beta is the tilt angle of the aneurysm dome with respect to the basilar artery. The intra-aneurysmal pulsatile flow shows complex ring vortex structures for beta = 0 deg and single recirculation regions for beta = 23.2 deg during both systole and diastole. The pressure and shear stress on the aneurysm wall exhibit large temporal and spatial variations for both models. When compared to a non-Newtonian fluid, the symmetric aneurysm model (beta = 0 deg) exhibits a more unstable Newtonian flow dynamics, although with a lower peak wall shear stress than the asymmetric model (beta = 23.2 deg). The non-Newtonian fluid assumption yields more stable flows than a Newtonian fluid, for the same inlet flow rate. Both fluid modeling assumptions, however, lead to asymmetric oscillatory flows inside the aneurysm dome.  相似文献   

2.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were 'treated' with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   

3.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were ‘treated’ with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   

4.
Pulsatile flow in an axisymmetric rigid-walled model of an abdominal aorta aneurysm was analyzed numerically for various aneurysm dilations using physiologically realistic resting waveform at time-averaged Reynolds number of 300 and peak Reynolds number of 1607. Discretization of the governing equations was achieved using a finite element scheme based on the Galerkin method of weighted residuals. Comparisons with previously published work on the basis of special cases were performed and found to be in excellent agreement. Our findings indicate that the velocity fields are significantly affected by non-Newtonian properties in pathologically altered configurations. Non-Newtonian fluid shear stress is found to be greater than Newtonian fluid shear stress during peak systole. Further, the maximum shear stress is found to occur near the distal end of AAA during peak systole. The impact of non-Newtonian blood flow characteristics on pressure compared to Newtonian model is found insignificant under resting conditions. Viscous and inertial forces associated with blood flow are responsible for the changes in the wall that result in thrombus deposition and dilation while rupture of AAA is more likely determined by much larger mechanical stresses imposed by pulsatile pressure on the wall of AAA.  相似文献   

5.
Thoracic endovascular aortic repair (TEVAR) has been introduced as a less invasive approach to the treatment of thoracic aortic aneurysm (TAA). However, the effectiveness of TEVAR in the treatment of TAA is often limited due to the complex anatomy of aortic arch. Flow preservation at the three supra-aortic branches further increases the overall technical difficulty. This study proposes a novel stent graft design with slit perforations that can positively alter the hemodynamics at the aortic arch while maintaining blood flow to supra-aortic branches. We carried out a computational fluid dynamic (CFD) analysis to evaluate flow characteristics near stented aortic arch in simplified TAA models, followed by in-vitro experiments using particle image velocimetry (PIV) in a mock circulatory loop. The hemodynamics result was studied in terms of time-averaged wall shear stress (TAWSS), oscillating shear index (OSI), and endothelial cell action potential (ECAP). The results showed that the stent graft with slit perforations can reduce the disturbed flow region considerably. Furthermore, the effect of the slits on flow preservation to the supra-aortic branches was simulated and compared with experimental results. The effectiveness of the stent graft with slit perforations in preserving flow to the branches was demonstrated by both simulated and experimental results. Low TAWSS and elevated ECAP were observed in the aortic arch aneurysm after the placement of the stent graft with slits, implying the potential of thrombus formation in the aneurysm. On the other hand, the effects of the stent grafts with full-slit design and half-slit design on the shear stress did not differ significantly. The present analysis indicated that not only could the stent graft with slit perforations shield the aneurysm from rupture, but also it resulted in a favorable environment for thrombus that can contribute to the shrinkage of the aneurysm.  相似文献   

6.
Cerebral aneurysms constitute a major medical challenge as treatment options are limited and often associated with high risks. Statistically, up to 3% of patients with a brain aneurysm may suffer from bleeding for each year of life. Eight percent of all strokes are caused by ruptured aneurysms. In order to prevent this rupture, endovascular stenting using so called flow diverters is increasingly being regarded as an alternative to the established coil occlusion method in minimally invasive treatment. Covering the neck of an aneurysm with a flow diverter has the potential to alter the hemodynamics in such a way as to induce thrombosis within the aneurysm sac, stopping its further growth, preventing its rupture and possibly leading to complete resorption. In the present study the influence of different flow diverters is quantified considering idealized patient configurations, with a spherical sidewall aneurysm placed on either a straight or a curved parent vessel. All important hemodynamic parameters (exchange flow rate, velocity, and wall shear stress) are determined in a quantitative and accurate manner using computational fluid dynamics when varying the key geometrical properties of the aneurysm. All simulations are carried out using an incompressible, Newtonian fluid with steady conditions. As a whole, 72 different cases have been considered in this systematic study. In this manner, it becomes possible to compare the efficiency of different stents and flow diverters as a function of wire density and thickness. The results show that the intra-aneurysmal flow velocity, wall shear stress, mean velocity, and vortex topology can be considerably modified thanks to insertion of a suitable implant. Intra-aneurysmal residence time is found to increase rapidly with decreasing stent porosity. Of the three different implants considered in this study, the one with the highest wire density shows the highest increase of intra-aneurysmal residence time for both the straight and the curved parent vessels. The best hemodynamic modifications are always obtained for a small aneurysm diameter.  相似文献   

7.
《Journal of biomechanics》2014,47(14):3524-3530
To investigate the hemodynamic performance of overlapping bare-metal stents intervention treatment to thoracic aortic aneurysms (TAA), three simplified TAA models, representing, no stent, with a single stent and 2 overlapped stents deployed in the aneurismal sac, were studied and compared in terms of flow velocity, wall shear stress (WSS) and pressure distributions by means of computational fluid dynamics. The results showed that overlapping stents intervention induced a flow field of slow velocity near the aneurismal wall. Single stent deployment in the sac reduced the jet-like flow formed prior to the proximal neck of the aneurysm, which impinged on the internal wall of the aneurysm. This jet-like flow vanished completely in the overlapping double stents case. Overlapping stents intervention led to an evident decrease in WSS; meanwhile, the pressure acting on the wall of the aneurysm was reduced slightly and presented more uniform distribution. The results therefore indicated that overlapping stents intervention may effectively isolate the thoracic aortic aneurysm, protecting it from rupture. In conclusion, overlapping bare-metal stents may serve a purpose similar to that of the multilayer aneurysm repair system (MARS) manufactured by Cardiatis SA (Isnes, Belgium).  相似文献   

8.
Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.  相似文献   

9.
In experiments turbulence has previously been shown to occur in intracranial aneurysms. The effects of turbulence induced oscillatory wall stresses could be of great importance in understanding aneurysm rupture. To investigate the effects of turbulence on blood flow in an intracranial aneurysm, we performed a high resolution computational fluid dynamics (CFD) simulation in a patient specific middle cerebral artery (MCA) aneurysm using a realistic, pulsatile inflow velocity. The flow showed transition to turbulence just after peak systole, before relaminarization occurred during diastole. The turbulent structures greatly affected both the frequency of change of wall shear stress (WSS) direction and WSS magnitude, which reached a maximum value of 41.5Pa. The recorded frequencies were predominantly in the range of 1-500Hz. The current study confirms, through properly resolved CFD simulations that turbulence can occur in intracranial aneurysms.  相似文献   

10.
Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. Although exact causes and mechanisms of AV calcification are unclear, previous studies suggest that mechanical forces play a role. Since calcium deposits occur almost exclusively on the aortic surfaces of AV leaflets, it has been hypothesized that adverse patterns of fluid shear stress on the aortic surface of AV leaflets promote calcification. The current study characterizes AV leaflet aortic surface fluid shear stresses using Laser Doppler velocimetry and an in vitro pulsatile flow loop. The valve model used was a native porcine valve mounted on a suturing ring and preserved using 0.15% glutaraldehyde solution. This valve model was inserted in a mounting chamber with sinus geometries, which is made of clear acrylic to provide optical access for measurements. To understand the effects of hemodynamics on fluid shear stress, shear stress was measured across a range of conditions: varying stroke volumes at the same heart rate and varying heart rates at the same stroke volume. Systolic shear stress magnitude was found to be much higher than diastolic shear stress magnitude due to the stronger flow in the sinuses during systole, reaching up to 20 dyn/cm2 at mid-systole. Upon increasing stroke volume, fluid shear stresses increased due to stronger sinus fluid motion. Upon increasing heart rate, fluid shear stresses decreased due to reduced systolic duration that restricted the formation of strong sinus flow. Significant changes in the shear stress waveform were observed at 90 beats/min, most likely due to altered leaflet dynamics at this higher heart rate. Overall, this study represents the most well-resolved shear stress measurements to date across a range of conditions on the aortic side of the AV. The data presented can be used for further investigation to understand AV biological response to shear stresses.  相似文献   

11.
Background and purpose: Hemodynamic parameters are important in the pathogenesis, evolution and rupture of intracranial aneurysm. Energy loss (EL) has been applied for the rupture risk prediction of artery aneurysms recently. We proposed a new EL and further investigate its effects on the rupture of aneurysms. Materials and methods: Sixty-four patient-specific ophthalmic aneurysm datasets were divided into ruptured and unruptured groups based on their clinical history. Based on patient-specific 3D-DSA data, realistic models were retrospectively reconstructed and then analyzed by using computational fluid dynamic method. Results: The flow field feature EL in ruptured cases was significantly higher than that in unruptured cases. The average wall shear stress (WSS) and the maximum WSS in ruptured cases were higher than those in unruptured cases. Modified pressure loss coefficient (PLCM) in ruptured cases was slight higher than that in unruptured cases but the difference has no statistical significance. Multivariate logistic regression analysis demonstrated flow field feature EL (p < 0.05) and the maximum WSS (p < 0.05) were the only independently significant variables to predict rupture of ophthalmic aneurysm. There were no differences in PLCM, the maximum oscillatory shear index (OSI), the average OSI and AR between the two groups. Conclusion: Flow field feature EL may be a reliable factor to predict the rupture risk of aneurysms.  相似文献   

12.
Flow dynamics play an important role in the pathogenesis and treatment of intracranial aneurysms. The evaluation of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils, and the temporal and spatial variations of wall shear stress in the aneurysm are correlated with its growth and rupture. This numerical investigation describes the hemodynamic in two models of terminal aneurysm of the basilar artery. Aneurysm models with a aspect ratio of 1.0 and 1.67 were studied. Each model was subject to physiological representative waveform of inflow for a mean Reynolds number of 560. The effects of symmetric and asymmetric outflow conditions in the branches were studied.  相似文献   

13.
Pulsatile flows in glass models simulating fusiform and lateral saccular aneurysms were investigated by a flow visualization method. When resting fluid starts to flow, the initial fluid motion is practically irrotational. After a short period of time, the flow began to separate from the proximal wall of the aneurysm. Then the separation bubble or vortex grew rapidly in size and filled the whole area of the aneurysm circumferentially. During this period of time, the center of the vortex moved from the proximal end to the distal point of the aneurysm. The transient reversal flow, for instance, which may occur at the end of the ejection period, passed between the wall of the aneurysm and the centrally located vortex. When the rate and pulsatile frequency of flow were high, the vortex broke down into highly disturbed flow (or turbulence) at the distal portion of the aneurysm. The same effect was observed when the length of the aneurysm was increased. A reduction in pulsatile amplitude made the flow pattern close to that in steady flow. A finite element analysis was made to obtain velocity and pressure fields in pulsatile flow through a tube with an axisymmetric expansion. Calculations were performed with the pulsatile flows used in the visualization experiment in order to study the effects of change in the pulsatile wave form by keeping the time-mean Reynolds number and Womersley's parameter unchanged. Calculated instantaneous patterns of velocity field and stream lines agreed well with the experimental results. The appearance and disappearance of the vortex in the dilated portion and its development resulted in complex distributions of pressure and shear fields. Locally minimum and maximum values of wall shear stress occurred at points just upstream and downstream of the distal end of the expansion when the flow rate reached its peak.  相似文献   

14.
《Journal of biomechanics》2014,47(16):3882-3890
Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms.  相似文献   

15.
The abdominal aortic aneurysm (AAA) is a significant cause of death and disability in the Western world and is the subject of many clinical and pathological studies. One of the most commonly used surrogates of the human AAA is the angiotensin II (Ang II) induced model used in mice. Despite the widespread use of this model, there is a lack of knowledge concerning its hemodynamics; this study was motivated by the desire to understand the fluid dynamic environment of the mouse AAA. Numerical simulations were performed using three subject-specific mouse models in flow conditions typical of the mouse. The numerical results from one model showed a shed vortex that correlated with measurements observed in vivo by Doppler ultrasound. The other models had smaller aneurysmal volumes and did not show vortex shedding, although a recirculation zone was formed in the aneurysm, in which a vortex could be observed, that elongated and remained attached to the wall throughout the systolic portion of the cardiac cycle. To link the hemodynamics with aneurysm progression, the remodeling that occurred between week one and week two of the Ang II infusion was quantified and compared with the hemodynamic wall parameters. The strongest correlation was found between the remodeled distance and the oscillatory shear index, which had a correlation coefficient greater than 0.7 for all three models. These results demonstrate that the hemodynamics of the mouse AAA are driven by a strong shear layer, which causes the formation of a recirculation zone in the aneurysm cavity during the systolic portion of the cardiac waveform. The recirculation zone results in areas of quiescent flow, which are correlated with the locations of the aneurysm remodeling.  相似文献   

16.
An aneurysm is a local artery ballooning greater than 50% of its nominal diameter with a risk of sudden rupture. Minimally invasive repair can be achieved by inserting surgically a stent-graft, called an endovascular graft (EVG), which is either straight tubular curved tubular or bifurcating. However post-procedural complications may arise because of elevated stagnant blood pressure in the cavity, i.e., the sac formed by the EVG and the weakened aneurysm wall In order to investigate the underlying mechanisms leading to elevated sac-pressures and hence to potentially dangerous wall stress levels and aneurysm rupture, a transient 3-D stented abdominal aortic aneurysm model and a coupled fluid-structure interaction solver were employed. Simulation results indicate that, even without the presence of endoleaks (blood flowing into the cavity), elevated sac pressure can occur due to complex fluid-structure interactions between the luminal blood flow, EVG wall, intra-sac stagnant blood, including an intra-luminal thrombus, and the aneurysm wall. Nevertheless, the impact of sac-blood volume changes due to leakage on the sac pressure and aneurysm wall stress was analyzed as well. While blood flow conditions, EVG and aneurysm geometries as well as wall mechanical properties play important roles in both sac pressure and wall stress generation, it is always the maximum wall stress that is one of the most critical parameters in aneurysm rupture prediction. All simulation results are in agreement with experimental data and clinical observations.  相似文献   

17.
This study examines the effect of aneurysmal wall elasticity on the structure of flow within an elastic aneurysm during pulsatile flow. We visualized flow structure in a model of an elastic saccular aneurysm located at the bifurcation of the anterior cerebral artery and extending to the anterior communicating artery, and measured changes in the diameter of the aneurysm wall during pulsatile flow using particle imaging velocimetry (PIV). We similarly measured these features during steady flow by PIV and found that dilation of the aneurysmal wall absorbed the dynamic energy within the aneurysm. Accordingly, aneurysm wall elasticity functions as a biocompatible reaction that relieves wall shear stress acting on the vascular wall during pulsatile flow, and should thus inhibit the development and rupture of an aneurysm.  相似文献   

18.
Cerebral aneurysms are a common cause of death and disability. Of all the cardiovascular diseases, aneurysms are perhaps the most strongly linked with the local fluid mechanic environment. Aside from early in vivo clinical work that hinted at the possibility of high-frequency intra-aneurysmal velocity oscillations, flow in cerebral aneurysms is most often assumed to be laminar. This work investigates, through the use of numerical simulations, the potential for disturbed flow to exist in the terminal aneurysm of the basilar bifurcation. The nature of the disturbed flow is explored using a series of four idealized basilar tip models, and the results supported by four patient specific terminal basilar tip aneurysms. All four idealized models demonstrated instability in the inflow jet through high frequency fluctuations in the velocity and the pressure at approximately 120?Hz. The instability arises through a breakdown of the inflow jet, which begins to oscillate upon entering the aneurysm. The wall shear stress undergoes similar high-frequency oscillations in both magnitude and direction. The neck and dome regions of the aneurysm present 180 deg changes in the direction of the wall shear stress, due to the formation of small recirculation zones near the shear layer of the jet (at the frequency of the inflow jet oscillation) and the oscillation of the impingement zone on the dome of the aneurysm, respectively. Similar results were observed in the patient-specific models, which showed high frequency fluctuations at approximately 112 Hz in two of the four models and oscillations in the magnitude and direction of the wall shear stress. These results demonstrate that there is potential for disturbed laminar unsteady flow in the terminal aneurysm of the basilar bifurcation. The instabilities appear similar to the first instability mode of a free round jet.  相似文献   

19.
Flow instability has emerged as a new hemodynamic metric hypothesized to have potential value in assessing the rupture risk of cerebral aneurysms. However, diverse findings have been reported in the literature. In the present study, high-resolution hemodynamic simulations were performed retrospectively on 35 aneurysms (10 ruptured & 25 unruptured) located at the internal carotid artery (ICA). Simulated hemodynamic parameters were statistically compared between the ruptured and unruptured aneurysms, with emphasis on examining the correlation of flow instability with the status of aneurysm rupture. Pronounced flow instability was detected in 20% (2 out of 10) of the ruptured aneurysms, whereas in 44% (11 out of 25) of the unruptured aneurysms. Statistically, the flow instability metric (quantified by the temporally and spatially averaged fluctuating kinetic energy over the aneurysm sac) did not differ significantly between the ruptured and unruptured aneurysms. In contrast, low wall shear stress area (LSA) and pressure loss coefficient (PLC) exhibited significant correlations with the status of aneurysm rupture. In conclusion, the present study suggests that the presence of flow instability may not correlate closely with the status of aneurysm rupture, at least for ICA aneurysms. On the other hand, the retrospective nature of the study and the small sample size may have to some extent compromised the reliability of the conclusion, and therefore large-scale prospective studies would be needed to further address the issue.  相似文献   

20.
Aortic dissecting aneurysm is one of the most catastrophic cardiovascular emergencies that carries high mortality. It was pointed out from clinical observations that the aneurysm development is likely to be related to the hemodynamics condition of the dissected aorta. In order to gain more insight on the formation and progression of dissecting aneurysm, hemodynamic parameters including flow pattern, velocity distribution, aortic wall pressure and shear stress, which are difficult to measure in vivo, are evaluated using numerical simulations. Pulsatile blood flow in patient-specific dissecting aneurismal aortas before and after the formation of lumenal aneurysm (pre-aneurysm and post-aneurysm) is investigated by computational fluid dynamics (CFD) simulations. Realistic time-dependent boundary conditions are prescribed at various arteries of the complete aorta models. This study suggests the helical development of false lumen around true lumen may be related to the helical nature of hemodynamic flow in aorta. Narrowing of the aorta is responsible for the massive recirculation in the poststenosis region in the lumenal aneurysm development. High pressure difference of 0.21 kPa between true and false lumens in the pre-aneurismal aorta infers the possible lumenal aneurysm site in the descending aorta. It is also found that relatively high time-averaged wall shear stress (in the range of 4-8 kPa) may be associated with tear initiation and propagation. CFD modeling assists in medical planning by providing blood flow patterns, wall pressure and wall shear stress. This helps to understand various phenomena in the development of dissecting aneurysm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号