首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estrogen actions are mediated by a complex interface of direct control of gene expression (the so-called "genomic action") and by regulation of cell signaling/phosphorylation cascades, referred to as the "nongenomic," or extranuclear, action. We have previously described the identification of MNAR (modulator of nongenomic action of estrogen receptor) as a novel scaffold protein that regulates estrogen receptor alpha (ERalpha) activation of cSrc. In this study, we have investigated the role of MNAR in 17beta-estradiol (E2)-induced activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Consistent with our previous results, a direct correlation was established between MNAR expression levels and E2-induced activation of PI3 and Akt kinases. Endogenous MNAR, ERalpha, cSrc, and p85, the regulatory subunit of PI3 kinase, interacted in MCF7 cells treated with E2. The interaction between p85 and MNAR required activation of cSrc and MNAR phosphorylation on Tyr 920. Consequently, the mutation of this tyrosine to alanine (Y920A) abrogated the interaction between MNAR and p85 and the E2-induced activation of the PI3K/Akt pathway, which was required for the E2-induced protection of MCF7 cells from apoptosis. Nonetheless, the Y920A mutant potentiated the E2-induced activation of the Src/MAPK pathway and MCF7 cell proliferation, as observed with the wild-type MNAR. These results provide new and important insights into the molecular mechanisms of E2-induced regulation of cell proliferation and apoptosis.  相似文献   

2.
Although estrogen is known to activate endothelial nitric oxide synthase (eNOS) in the vascular endothelium, the molecular mechanism responsible for this effect remains to be elucidated. In studies of both human umbilical vein endothelial cells (HUVECs) and simian virus 40-transformed rat lung vascular endothelial cells (TRLECs), 17beta-estradiol (E2), but not 17alpha-E2, caused acute activation of eNOS that was unaffected by actinomycin D and was specifically blocked by the pure estrogen receptor antagonist ICI-182,780. Treatment of both TRLECs and HUVECs with 17beta-E2 stimulated the activation of Akt, and the PI3K inhibitor wortmannin blocked the 17beta-E2-induced activation of Akt. 17beta-E2-induced Akt activation was also inhibited by ICI-182,780, but not by actinomycin D. Either treatment with wortmannin or exogenous expression of a dominant negative Akt in TRLECs decreased the 17beta-E2-induced eNOS activation. Moreover, 17beta-E2-induced Akt activation actually enhances the phosphorylation of eNOS. 17beta-E2-induced Akt activation was dependent on both extracellular and intracellular Ca(2+). We further examined the 17beta-E2-induced Akt activity in Chinese hamster ovary (CHO) cells transiently transfected with cDNAs for estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta). 17beta-E2 stimulated the activation of Akt in CHO cells expressing ERalpha but not in CHO cells expressing ERbeta. Our findings suggest that 17beta-E2 induced eNOS activation through an Akt-dependent mechanism, which is mediated by ERalpha via a nongenomic mechanism.  相似文献   

3.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

4.
Estrogens can either relax or contract arteries via rapid, nongenomic mechanisms involving classic estrogen receptors (ER). In addition to ERα and ERβ, estrogen may also stimulate G protein-coupled estrogen receptor 1 (GPER) in nonvascular tissue; however, a potential role for GPER in coronary arteries is unclear. The purpose of this study was to determine how GPER activity influenced coronary artery reactivity. In vitro isometric force recordings were performed on endothelium-denuded porcine arteries. These studies were augmented by RT-PCR and single-cell patch-clamp experiments. RT-PCR and immunoblot studies confirmed expression of GPER mRNA and protein, respectively, in smooth muscle from either porcine or human coronary arteries. G-1, a selective GPER agonist, produced a concentration-dependent relaxation of endothelium-denuded porcine coronary arteries in vitro. This response was attenuated by G15, a GPER-selective antagonist, or by inhibiting large-conductance calcium-activated potassium (BK(Ca)) channels with iberiotoxin, but not by inhibiting NO signaling. Last, single-channel patch-clamp studies demonstrated that G-1 stimulates BK(Ca) channel activity in intact smooth muscle cells from either porcine or human coronary arteries but had no effect on channels isolated in excised membrane patches. In summary, GPER activation relaxes coronary artery smooth muscle by increasing potassium efflux via BK(Ca) channels and requires an intact cellular signaling mechanism. This novel action of estrogen-like compounds may help clarify some of the controversy surrounding the vascular effects of estrogens.  相似文献   

5.
17beta-Estradiol activates endothelial nitric oxide synthase (eNOS), enhancing nitric oxide (NO) release from endothelial cells via the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The upstream regulators of this pathway are unknown. We now demonstrate that 17beta-estradiol rapidly activates eNOS through Src kinase in human endothelial cells. The Src family kinase specific-inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) abrogates 17beta-estradiol- but not ionomycin-stimulated NO release. Consistent with these results, PP2 blocked 17beta-estradiol-induced Akt phosphorylation but did not inhibit NO release from cells transduced with a constitutively active Akt. PP2 abrogated 17beta-estradiol-induced activation of PI3-kinase, indicating that the PP2-inhibitable kinase is upstream of PI3-kinase and Akt. A 17beta-estradiol-induced estrogen receptor/c-Src association correlated with rapid c-Src phosphorylation. Moreover, transfection of kinase-dead c-Src inhibited 17beta-estradiol-induced Akt phosphorylation, whereas constitutively active c-Src increased basal Akt phosphorylation. Estrogen stimulation of murine embryonic fibroblasts with homozygous deletions of the c-src, fyn, and yes genes failed to induce Akt phosphorylation, whereas cells maintaining c-Src expression demonstrated estrogen-induced Akt activation. Estrogen rapidly activated c-Src inducing an estrogen receptor, c-Src, and P85 (regulatory subunit of PI3-kinase) complex formation. This complex formation results in the successive activation of PI3-kinase, Akt, and eNOS with consequent enhanced NO release, implicating c-Src as a critical upstream regulator of the estrogen-stimulated PI3-kinase/Akt/eNOS pathway.  相似文献   

6.
Estrogen-bound estrogen receptors (ER) alpha and beta classically activate gene expression after binding to the estrogen response element in the promoter regions of target genes. Estrogen also has rapid, nongenomic effects. It activates several membranous or cytoplasmic kinase cascades, including the phosphatidylinositol 3-phosphate (PI3K/Akt) cascade, a signaling pathway that plays a key role in cell survival and apoptosis. Normal human endometrium is exposed to variable levels of steroid hormones throughout the menstrual cycle. We hypothesized that Akt phosphorylation in human endometrium may vary with the menstrual cycle and in early pregnancy and that fluctuations in estrogen level may play a role in Akt activation in endometrial cells. We analyzed Akt phosphorylation using in vivo and in vitro techniques, including Western blot, immunohistochemistry, and immunocytochemistry. Estradiol significantly increased Akt phosphorylation in endometrial cells. Rapid stimulation of Akt activation in cultured stromal cells was observed. Akt phosphorylation by estradiol was inhibited by the PI3K inhibitor, wortmannin, but not by the ER antagonist, ICI 182 780. The maximal effect on Akt activity was observed following 5-15 min of estradiol treatment. Our results suggest that estradiol may directly affect PI3K-related signaling pathway by increasing the phosphorylation of Akt in endometrial cells. Thus, estradiol may exert part of its proliferative and antiapoptotic effects by a nongenomic manner through the Akt signaling pathway.  相似文献   

7.
We have recently reported that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IKK signaling pathways and that curcumin (diferulolylmethane) down-regulates these pathways (Philip, S., and Kundu, G. C. (2003) J. Biol. Chem. 278, 14487-14497). However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and urokinase type plasminogen activator (uPA) secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt in highly invasive MDA-MB-231 and low invasive MCF-7 cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with a dominant negative mutant of the p85 domain of PI 3-kinase (Deltap85) and enhanced when cells were transfected with an activated form of PI 3-kinase (p110CAAX), indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. However, both pharmacological (wortmannin and LY294002) and genetic (Deltap85) inhibitors of PI 3'-kinase inhibited OPN-induced Akt phosphorylation, IKK activity, and NFkappaB activation through phosphorylation and degradation of IkappaBalpha. OPN also enhances uPA secretion, cell motility, and extracellular matrix invasion. Furthermore, cells transfected with Deltap85 or the super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility, whereas cells transfected with p110CAAX enhanced these effects. Pretreatment of cells with PI 3-kinase inhibitors or NFkappaB inhibitory peptide (SN-50) reduced the OPN-induced uPA secretion, cell motility, and invasion. To our knowledge, this is first report that OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN-induced PI 3'-kinase-dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

8.
9.
Oxidative stress activates various signal transduction pathways, including Jun N-terminal kinase (JNK) and its substrates, that induce apoptosis. We reported here the role of angiopoietin-1 (Ang1), which is a prosurvival factor in endothelial cells, during endothelial cell damage induced by oxidative stress. Hydrogen peroxide (H2O2) increased apoptosis of endothelial cells through JNK activation, whereas Ang1 inhibited H2O2-induced apoptosis and concomitant JNK phosphorylation. The inhibition of H2O2-induced JNK phosphorylation was reversed by inhibitors of phosphatidylinositol (PI) 3-kinase and dominant-negative Akt, and constitutively active-Akt attenuated JNK phosphorylation without Ang1. These data suggested that Ang1-dependent Akt phosphorylation through PI 3-kinase leads to the inhibition of JNK phosphorylation. H2O2-induced phosphorylation of SAPK/Erk kinase (SEK1) at Thr261, which is an upstream regulator of JNK, was also attenuated by Ang1-dependent activation of the PI 3-kinase/Akt pathway. In addition, Ang1 induced SEK1 phosphorylation at Ser80, suggesting the existence of an additional signal transduction pathway through which Ang1 attenuates JNK phosphorylation. These results demonstrated that Ang1 attenuates H2O2-induced SEK1/JNK phosphorylation through the PI 3-kinase/Akt pathway and inhibits the apoptosis of endothelial cells to oxidative stress.  相似文献   

10.
Protein phosphorylation in a human glioblastoma cell line, T98G, was examined after exposure to oxidative stress in vitro. Hydrogen peroxide (1 mM) markedly induced tyrosine phosphorylation of focal adhesion kinase (FAK) and serine phosphorylation of Akt at 1 h after stimulation. Concommitantly, the association of FAK with phosphatidylinositide 3'-OH-kinase (PI 3-kinase) was also observed by the hydrogen peroxide stimulation. When T98G cells were incubated with wortmannin, a PI 3-kinase inhibitor, both PI 3-kinase activity and phosphorylation of Akt were inhibited, whereas apoptosis by oxidative stress was accelerated. Concomitant with apoptosis, elevated level of CPP32 protease activity (caspase-3) was observed, with decreases in Bcl-2 protein and increases in Bax protein. These results suggested that in the signal transduction pathway from FAK to PI 3-kinase, Akt promotes survival. Thus, it became apparent that FAK is the upstream signal protein of the PI 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis in T98G cells.  相似文献   

11.
Numerous studies have demonstrated the neuroprotective effects of estrogen in experimental cerebral ischemia. To investigate molecular mechanisms of estrogen neuroprotection in global ischemia, immunoblotting, immunohistochemistry and Nissel-staining analysis were used. Our results showed that chronic pretreatment with beta-estradiol 3-benzoate (E2) enhanced Akt1 activation and reduced the activation of mixed-lineage kinase 3 (MLK3), mitogen-activated protein kinase kinase 4/7 (MKK4/7), and c-Jun N-terminal kinase 1/2 (JNK1/2) in the hippocampal CA1 subfield during reperfusion after 15 min of global ischemia. In addition, E2 reduced downstream JNK nuclear and non-nuclear components, c-Jun and Bcl-2 phosphorylation and Fas ligand protein expression induced by ischemia/reperfusion. Administration of phosphoinositide 3-kinase (PI3K) inhibitor LY 294,002 prevented both activation of Akt1 and inhibition of MLK3, MKK4/7 and JNK1/2. The interaction between ERalpha and the p85 subunit of PI3K was also examined. E2 and antiestrogen ICI 182,780 promoted and prevented this interaction, respectively. Furthermore, ICI 182,780 blocked both the activation of Akt1 and the inhibition of MLK3, MKK4/7 and JNK1/2. Photomicrographs of cresyl violet-stained brain sections showed that E2 reduced CA1 neuron loss after 5 days of reperfusion, which was abolished by ICI 182,780 and LY 294,002. Our data indicate that in response to estrogen, ERalpha interacts with PI3K to activate Akt1, which may inhibit the MLK3-MKK4/7-JNK1/2 pathway to protect hippocampal CA1 neurons against global cerebral ischemia in male rats.  相似文献   

12.
In resting cells, eIF4E-binding protein 1 (4E-BP1) binds to the eukaryotic initiation factor-4E (eIF-4E), preventing formation of a functional eIF-4F complex essential for cap-dependent initiation of translation. Phosphorylation of 4E-BP1 dissociates it from eIF-4E, relieving the translation block. Studies suggested that insulin- or growth factor-induced 4E-BP1 phosphorylation is mediated by phosphatidylinositol 3-kinase (PI3-kinase) and its downstream protein kinase, Akt. In the present study we demonstrated that UVB induced 4E-BP1 phosphorylation at multiple sites, Thr-36, Thr-45, Ser-64, and Thr-69, leading to dissociation of 4E-BP1 from eIF-4E. UVB-induced phosphorylation of 4E-BP1 was blocked by p38 kinase inhibitors, PD169316 and SB202190, and MSK1 inhibitor, H89, but not by mitogen-activated protein kinase kinase inhibitors, PD98059 or U0126. The PI3-kinase inhibitor, wortmannin, did not block UVB-induced 4E-BP1 phosphorylation, but blocked both UVB- and insulin-induced activation of PI3-kinase and phosphorylation of Akt. 4E-BP1 phosphorylation was blocked in JB6 Cl 41 cells expressing a dominant negative p38 kinase or dominant negative MSK1, but not in cells expressing dominant negative ERK2, JNK1, or PI3-kinase p85 subunit. Our results suggest that UVB induces phosphorylation of 4E-BP1, leading to the functional dissociation of 4E-BP1 from eIF-4E. The p38/MSK1 pathway, but not PI3-kinase or Akt, is required for mediating the UVB-induced 4E-BP1 phosphorylation.  相似文献   

13.
Androgens are reported to have both beneficial and detrimental effects on human cardiovascular health. The aim of this study was to characterize nongenomic signaling mechanisms in coronary artery smooth muscle (CASM) and define the ionic basis of testosterone (TES) action. TES-induced relaxation of endothelium-denuded porcine coronary arteries was nearly abolished by 20 nM iberiotoxin, a highly specific inhibitor of large-conductance, calcium-activated potassium (BK(Ca)) channels. Molecular patch-clamp studies confirmed that nanomolar concentrations of TES stimulated BK(Ca) channel activity by ~100-fold and that inhibition of nitric oxide synthase (NOS) activity by N(G)-monomethyl-L-arginine nearly abolished this effect. Inhibition of nitric oxide (NO) synthesis or guanylyl cyclase activity also attenuated TES-induced coronary artery relaxation but did not alter relaxation due to 8-bromo-cGMP. Furthermore, we detected TES-stimulated NO production in porcine coronary arteries and in human CASM cells via stimulation of the type 1 neuronal NOS isoform. Inhibition of the cGMP-dependent protein kinase (PKG) attenuated TES-stimulated BK(Ca) channel activity, and direct assay determined that TES increased activity of PKG in a concentration-dependent fashion. Last, the stimulatory effect of TES on BK(Ca) channel activity was mimicked by addition of purified PKG to the cytoplasmic surface of a cell-free membrane patch from CASM myocytes (~100-fold increase). These findings indicate that TES-induced relaxation of endothelium-denuded coronary arteries is mediated, at least in part, by enhanced NO production, leading to cGMP synthesis and PKG activation, which, in turn, opens BK(Ca) channels. These findings provide a molecular mechanism that could help explain why androgens have been reported to relax coronary arteries and relieve angina pectoris.  相似文献   

14.
Phosphatidylinositol (PI) 3-kinase and its downstream effector Akt are thought to be signaling intermediates that link cell surface receptors to p70 S6 kinase. We examined the effect of a G(q)-coupled receptor on PI 3-kinase/Akt signaling and p70 S6 kinase activation using Rat-1 fibroblasts stably expressing the human alpha(1A)-adrenergic receptor. Treatment of the cells with phenylephrine, a specific alpha(1)-adrenergic receptor agonist, activated p70 S6 kinase but did not activate PI 3-kinase or any of the three known isoforms of Akt. Furthermore, phenylephrine blocked the insulin-like growth factor-I (IGF-I)-induced activation of PI 3-kinase and the phosphorylation and activation of Akt-1. The effect of phenylephrine was not confined to signaling pathways that include insulin receptor substrate-1, as the alpha(1)-adrenergic receptor agonist also inhibited the platelet-derived growth factor-induced activation of PI 3-kinase and Akt-1. Although increasing the intracellular Ca(2+) concentration with the ionophore A23187 inhibited the activation of Akt-1 by IGF-I, Ca(2+) does not appear to play a role in the phenylephrine-mediated inhibition of the PI 3-kinase/Akt pathway. The differential ability of phenylephrine and IGF-I to activate Akt-1 resulted in a differential ability to protect cells from UV-induced apoptosis. These results demonstrate that activation of p70 S6 kinase by the alpha(1A)-adrenergic receptor in Rat-1 fibroblasts occurs in the absence of PI 3-kinase/Akt signaling. Furthermore, this receptor negatively regulates the PI 3-kinase/Akt pathway, resulting in enhanced cell death following apoptotic insult.  相似文献   

15.
Na(+)/H(+) exchanger 3 (NHE3) kinase A regulatory protein (E3KARP) has been implicated in cAMP- and Ca(2+)-dependent inhibition of NHE3. In the current study, a new role of E3KARP is demonstrated in the stimulation of NHE3 activity. Lysophosphatidic acid (LPA) is a mediator of the restitution phase of inflammation but has not been studied for effects on sodium absorption. LPA has no effect on NHE3 activity in opossum kidney (OK) proximal tubule cells, which lack expression of endogenous E3KARP. However, in OK cells exogenously expressing E3KARP, LPA stimulated NHE3 activity. Consistent with the stimulatory effect on NHE3 activity, LPA treatment increased the surface NHE3 amount, which occurred by accelerating exocytic trafficking (endocytic recycling) to the apical plasma membrane. These LPA effects only occurred in OK cells transfected with E3KARP. The LPA-induced increases of NHE3 activity, surface NHE3 amounts, and exocytosis were completely inhibited by pretreatment with the PI 3-kinase inhibitor, LY294002. LPA stimulation of the phosphorylation of Akt was used as an assay for PI 3-kinase activity. LY294002 completely prevented the LPA-induced increase in Akt phosphorylation, which is consistent with the inhibitory effect of LY294002 on the LPA stimulation of NHE3 activity. The LPA-induced phosphorylation of Akt was the same in OK cells with and without E3KARP. These results show that LPA stimulates NHE3 in the apical surface of OK cells by a mechanism that is dependent on both E3KARP and PI 3-kinase. This is the first demonstration that rapid stimulation of NHE3 activity is dependent on an apical membrane PDZ domain protein.  相似文献   

16.
17.
Recently, using the medial forebrain bundle (MFB) 6-hydroxydopmaine (6-OHDA) lesion rat model of Parkinson's disease (PD), we have demonstrated that blockade of central IGF-1 receptors (IGF-1R) attenuated estrogen neuroprotection of substantia nigra pars compacta (SNpc) DA neurons, but exacerbated 6-OHDA lesions in IGF-1 only treated rats (Quesada and Micevych [2004]: J Neurosci Res 75:107-116). This suggested that the IGF-1 system is a central mechanism through which estrogen acts to protect the nigrostriatal DA system. Moreover, these results also suggest that IGF-1R-induced intracellular signaling pathways are involved in the estrogen mechanism that promotes neuronal survival. In vitro, two convergent intracellular signaling pathways used by estrogen and IGF-1, the mitogen-activated protein kinase (MAPK/ERK), and phosphatidyl-inositol-3-kinase/Akt (PI3K/Akt), have been demonstrated to be neuroprotective. Continuous central infusions of MAPK/ERK and PI3K/Akt inhibitors were used to test the hypothesis that one or both of these signal transduction pathways mediates estrogen and/or IGF-1 neuroprotection of SNpc DA neurons after a unilateral administration of 6-OHDA into the MFB of rats. Motor behavior tests and tyrosine hydroxylase immunoreactivity revealed that the inhibitor of the PI3K/Akt pathway (LY294002) blocked the survival effects of both estrogen and IGF-1, while an inhibitor of the MAPK/ERK signaling (PD98059) was ineffective. Western blot analyses showed that estrogen and IGF-1 treatments increased PI3K/Akt activation in the SN; however, MAPK/ERK activation was decreased in the SN. Indeed, continuous infusions of inhibitors blocked phosphorylation of PI3K/Akt and MAPK/ERK. These findings indicate that estrogen and IGF-1-mediated SNpc DA neuronal protection is dependent on PI3K/Akt signaling, but not on the MAPK/ERK pathway.  相似文献   

18.
Nicotine treatment triggers calcium influx into neuronal cells, which promotes cell survival in a number of neuronal cells. Phosphoinositide (PI) 3-kinase and downstream PI3-kinase target Akt have been reported to be important in the calcium-mediated promotion of survival in a wide variety of cells. We investigated the mechanisms of nicotine-induced phosphorylation of Akt in PC12h cells, in comparison with nicotine-induced ERK phosphorylation. Nicotine induced Akt phosphorylation in a dose-dependent manner. A nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitor had no significant effect on nicotine-induced Akt phosphorylation, while a non-selective nAChR antagonist inhibited the phosphorylation. L-type voltage-sensitive calcium channel (VSCC) antagonists, calmodulin antagonist, and Ca2+/calmudulin-dependent protein kinase (CaM kinase) inhibitor prevented the nicotine-induced Akt phosphorylation. Three epidermal growth factor receptor (EGFR) inhibitors prevented the nicotine-induced phosphorylation of both extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and Akt. In contrast, an inhibitor of the Src family tyrosine kinase prevented the nicotine-induced Akt phosphorylation but not ERK phosphorylation. These results suggested that nicotine induces the activation of both PI3-kinase/Akt and ERK pathways via common pathways including non-alpha7-nAChRs, L-type VSCC, CaM kinase II and EGFR in PC12h cells, but Src family tyrosine kinases only participate in the pathway to activate Akt.  相似文献   

19.
20.
Nutritional excess and/or obesity represent well-known predisposition factors for the development of non-insulin-dependent diabetes mellitus (NIDDM). However, molecular links between obesity and NIDDM are only beginning to emerge. Here, we demonstrate that nutrients suppress phosphatidylinositol 3 (PI3)-kinase/Akt signaling via Raptor-dependent mTOR (mammalian target of rapamycin)-mediated phosphorylation of insulin receptor substrate 1 (IRS-1). Raptor directly binds to and serves as a scaffold for mTOR-mediated phosphorylation of IRS-1 on Ser636/639. These serines lie close to the Y(632)MPM motif that is implicated in the binding of p85alpha/p110alpha PI3-kinase to IRS-1 upon insulin stimulation. Phosphomimicking mutations of these serines block insulin-stimulated activation of IRS-1-associated PI3-kinase. Knockdown of Raptor as well as activators of the LKB1/AMPK pathway, such as the widely used antidiabetic compound metformin, suppress IRS-1 Ser636/639 phosphorylation and reverse mTOR-mediated inhibition on PI3-kinase/Akt signaling. Thus, diabetes-related hyperglycemia hyperactivates the mTOR pathway and may lead to insulin resistance due to suppression of IRS-1-dependent PI3-kinase/Akt signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号