首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans   总被引:1,自引:0,他引:1  
Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respiration. High resolution respirometry was used to quantify mitochondrial respiration from the biopsies of arm and leg muscles while in-vivo arm and leg VO(2) were determined by the Fick method during leg cycling and arm cranking. We hypothesized that muscle mitochondrial respiratory rate exceeds that of systemic oxygen delivery. The state 3 mitochondrial respiration of the deltoid muscle (4.3±0.4 mmol o(2)kg(-1) min(-1)) was similar to the in-vivo VO(2) during maximal arm cranking (4.7±0.5 mmol O(2) kg(-1) min(-1)) with 6 kg muscle. In contrast, the mitochondrial state 3 of the quadriceps was 6.9±0.5 mmol O(2) kg(-1) min(-1), exceeding the in-vivo leg VO(2) max (5.0±0.2 mmol O(2) kg(-1) min(-1)) during leg cycling with 20 kg muscle (P<0.05). Thus, when half or more of the body muscle mass is engaged during exercise, muscle mitochondrial respiratory capacity surpasses in-vivo VO(2) max. The findings reveal an excess capacity of muscle mitochondrial respiratory rate over O(2) delivery by the circulation in the cascade defining maximal oxidative rate in humans.  相似文献   

2.
A previously developed Krogh-type theoretical model was used to estimate capillary density in human skeletal muscle based on published measurements of oxygen consumption, arterial partial pressure of oxygen, and blood flow during maximal exercise. The model assumes that oxygen consumption in maximal exercise is limited by the ability of capillaries to deliver oxygen to tissue and is therefore strongly dependent on capillary density, defined as the number of capillaries per unit cross-sectional area of muscle. Based on an analysis of oxygen transport processes occurring at the microvascular level, the model allows estimation of the minimum number of straight, evenly spaced capillaries required to achieve a given oxygen consumption rate. Estimated capillary density values were determined from measurements of maximal oxygen consumption during knee extensor exercise and during whole body cycling, and they range from 459 to 1,468 capillaries/mm2. Measured capillary densities, obtained with either histochemical staining techniques or electron microscopy on quadriceps muscle biopsies from healthy subjects, are generally lower, ranging from 123 to 515 capillaries/mm2. This discrepancy is partly accounted for by the fact that capillary density decreases with muscle contraction and muscle biopsy samples typically are strongly contracted. The results imply that estimates of maximal oxygen transport rates based on capillary density values obtained from biopsy samples do not fully reflect the oxygen transport capacity of the capillaries in skeletal muscle.  相似文献   

3.
The interactions between exercise, vascular and metabolic plasticity, and aging have provided insight into the prevention and restoration of declining whole body and small muscle mass exercise performance known to occur with age. Metabolic and vascular adaptations to normoxic knee-extensor exercise training (1 h 3 times a week for 8 wk) were compared between six sedentary young (20 +/- 1 yr) and six sedentary old (67 +/- 2 yr) subjects. Arterial and venous blood samples, in conjunction with a thermodilution technique facilitated the measurement of quadriceps muscle blood flow and hematologic variables during incremental knee-extensor exercise. Pretraining, young and old subjects attained a similar maximal work rate (WR(max)) (young = 27 +/- 3, old = 24 +/- 4 W) and similar maximal quadriceps O(2) consumption (muscle Vo(2 max)) (young = 0.52 +/- 0.03, old = 0.42 +/- 0.05 l/min), which increased equally in both groups posttraining (WR(max), young = 38 +/- 1, old = 36 +/- 4 W, Muscle Vo(2 max), young = 0.71 +/- 0.1, old = 0.63 +/- 0.1 l/min). Before training, muscle blood flow was approximately 500 ml lower in the old compared with the young throughout incremental knee-extensor exercise. After 8 wk of knee-extensor exercise training, the young reduced muscle blood flow approximately 700 ml/min, elevated arteriovenous O(2) difference approximately 1.3 ml/dl, and increased leg vascular resistance approximately 17 mmHg x ml(-1) x min(-1), whereas the old subjects revealed no training-induced changes in these variables. Together, these findings indicate that after 8 wk of small muscle mass exercise training, young and old subjects of equal initial metabolic capacity have a similar ability to increase quadriceps muscle WR(max) and muscle Vo(2 max), despite an attenuated vascular and/or metabolic adaptation to submaximal exercise in the old.  相似文献   

4.
Objective: Insulin resistance in obese subjects results in the impaired use of glucose by insulin‐sensitive tissues, e.g., skeletal muscle. In the present study, we determined whether insulin resistance in obesity is associated with an impaired ability of exercise to stimulate muscle blood flow, oxygen delivery, or glucose uptake. Research Methods and Procedures: Nine obese (body mass index = 36 ± 2 kg/m2) and 11 age‐matched nonobese men (body mass index = 22 ± 1 kg/m2) performed one‐legged isometric exercise during hyperinsulinemia. Rates of femoral muscle blood flow, oxygen consumption, and glucose uptake were measured simultaneously in both legs using [15O]H2O, [15O]O2, [18F]fluoro‐deoxy‐glucose, and positron emission tomography. Results: The obese subjects exhibited resistance to insulin stimulation of glucose uptake in resting muscle, regardless of whether glucose uptake was expressed per kilogram of femoral muscle mass (p = 0.001) or per the total mass of quadriceps femoris muscle. At similar workloads, oxygen consumption, blood flow, and glucose uptake were lower in the obese than the nonobese subjects when expressed per kilogram of muscle, but similar when expressed per quadriceps femoris muscle mass. Discussion: We conclude that obesity is characterized by insulin resistance of glucose uptake in resting skeletal muscle regardless of how glucose uptake is expressed. When compared with nonobese individuals at similar absolute workloads and under identical hyperinsulinemic conditions, the ability of exercise to increase muscle oxygen uptake, blood flow, and glucose uptake per muscle mass is blunted in obese insulin‐resistant subjects. However, these defects are compensated for by an increase in muscle mass.  相似文献   

5.
The purpose of this study was to describe the relationships between 16 physiological, biochemical, and morphological variables presumed to relate to the oxidative capacity in quadriceps muscles or muscle parts in Standardbred horses. The variables included O2 delivery (blood flow) and mean capillary transit time (MTT) during treadmill locomotion at whole animal maximal O2 consumption (VO2max, 134 +/- 2 ml.min-1 x kg-1), capillary density and capillary-to-fiber ratio, myoglobin concentration, oxidative enzyme activities, glycolytic enzyme activities, fiber type populations, and fiber size. These components of muscle metabolic capacity were found to be interrelated to varying degrees using correlation matrix analysis, with lactate dehydrogenase activity showing the most significant correlations (n = 14) with other variables. Most of the "oxidative" variables occurred in the highest quantities in the deepest muscle of the group (vastus intermedius) and in the deepest parts of the other quadriceps muscles where the highest proportions of type I fibers were localized. The highest blood flow measured with microspheres in the muscle group during exercise was in vastus intermedius muscle (145 ml.min-1 x 100 g-1), and the lowest was in the superficial part of rectus femoris muscle (32 ml.min-1 x 100 g-1). Average muscle blood flow during exercise at whole animal VO2max was 116 ml.min-1 x 100 g-1. Because skeletal muscle comprised 43% of total body mass (453 +/- 34 kg), total muscle blood flow was estimated at 226 l/min, which was approximately 78% of total cardiac output (288 l/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This investigation evaluated regional differences in blood flow and oxygen consumption and their relationship in exercised muscle during recovery from exhaustive exercise. Five healthy men performed exhaustive one-legged cycling exercise. Positron emission tomography was used to measure blood flow, oxygen uptake, and oxygen extraction in the quadriceps femoris muscle before and after exercise. Regions of interest included five areas of the muscle (two proximal, one central, and two distal), which were evenly spaced across the muscle. Before exercise, blood flow and oxygen consumption decreased significantly (P < 0.05) in the direction from the proximal to the distal portions; blood flow declined from 2.0 +/- 0.5 to 1.4 +/- 0.3 ml x 100 g-1 x min-1, and oxygen consumption decreased from 0.21 +/- 0.04 to 0.17 +/- 0.02 ml.100 g-1x min-1. In contrast, these gradients in blood flow and oxygen consumption diminished during recovery after exercise. Consequently, there was a positive relationship between changes in blood flow and oxygen consumption in an exercised muscle during recovery after exercise (r = 0.963, P < 0.01). These changes became larger in the direction from proximal to distal portions: blood flow increased from 2.9 +/- 0.7 to 3.9 +/- 0.8 and oxygen consumption from 1.4 +/- 0.1 to 1.8 +/- 0.4 times resting values. These results suggest that hemodynamic variables are heterogeneous within a muscle both at rest and during recovery from exercise and that there is a systematic difference in these variables in the direction from proximal to distal regions within the quadriceps femoris muscle.  相似文献   

7.
Skeletal muscle blood flow and vascular conductance are influenced by numerous factors that can be divided into two general categories: central cardiovascular control mechanisms and local vascular control mechanisms. Central cardiovascular control mechanisms are thought to be designed primarily for the maintenance of arterial pressure and central cardiovascular homeostasis, whereas local vascular control mechanisms are thought to be designed primarily for the maintenance of muscle homeostasis. To support the high metabolic rates that can be generated during muscle contraction, skeletal muscle has a tremendous capacity to vasodilate and increase oxygen and nutrient delivery. During whole body dynamic exercise at maximal oxygen consumption (VO2 max), the skeletal muscle receives 85-90% of cardiac output. Yet despite receiving such a large fraction of cardiac output during high-intensity exercise, a vasodilator reserve remains with the potential to produce further elevations in skeletal muscle vascular conductance and blood flow. However, because maximal cardiac output is reached during exercise at VO2 max, further elevations in muscle vascular conductance would produce a fall in arterial pressure. Therefore, limits on muscle perfusion must be imposed during whole body exercise to prevent such drops in pressure. Effective arterial pressure control in response to a potentially hypotensive challenge during high-intensity exercise occurs primarily through reflex-mediated increases in sympathetic nerve activity, which are capable of modulating vasomotor tone of the skeletal muscle resistance vasculature. Thus skeletal muscle vascular conductance and perfusion are primarily mediated by local factors at rest and during exercise, but other centrally mediated control systems are superimposed on the dominant local control mechanisms to provide an integrated regulation of both arterial pressure and skeletal muscle vascular conductance and perfusion during whole body dynamic exercise.  相似文献   

8.
The aim of the present study was to determine the effect of nitric oxide and prostanoids on microcirculation and oxygen uptake, specifically in the active skeletal muscle by use of positron emission tomography (PET). Healthy males performed three 5-min bouts of light knee-extensor exercise. Skeletal muscle blood flow and oxygen uptake were measured at rest and during the exercise using PET with H(2)O(15) and (15)O(2) during: 1) control conditions; 2) nitric oxide synthase (NOS) inhibition by arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA), and 3) combined NOS and cyclooxygenase (COX) inhibition by arterial infusion of L-NMMA and indomethacin. At rest, inhibition of NOS alone and in combination with indomethacin reduced (P < 0.05) muscle blood flow. NOS inhibition increased (P < 0.05) limb oxygen extraction fraction (OEF) more than the reduction in muscle blood flow, resulting in an ~20% increase (P < 0.05) in resting muscle oxygen consumption. During exercise, muscle blood flow and oxygen uptake were not altered with NOS inhibition, whereas muscle OEF was increased (P < 0.05). NOS and COX inhibition reduced (P < 0.05) blood flow in working quadriceps femoris muscle by 13%, whereas muscle OEF and oxygen uptake were enhanced by 51 and 30%, respectively. In conclusion, by specifically measuring blood flow and oxygen uptake by the use of PET instead of whole limb measurements, the present study shows for the first time in humans that inhibition of NO formation enhances resting muscle oxygen uptake and that combined inhibition of NOS and COX during exercise increases muscle oxygen uptake.  相似文献   

9.
Emerging evidence indicates that, besides dyspnea relief, an improvement in locomotor muscle oxygen delivery may also contribute to enhanced exercise tolerance following normoxic heliox (replacement of inspired nitrogen by helium) administration in patients with chronic obstructive pulmonary disease (COPD). Whether blood flow redistribution from intercostal to locomotor muscles contributes to this improvement currently remains unknown. Accordingly, the objective of this study was to investigate whether such redistribution plays a role in improving locomotor muscle oxygen delivery while breathing heliox at near-maximal [75% peak work rate (WR(peak))], maximal (100%WR(peak)), and supramaximal (115%WR(peak)) exercise in COPD. Intercostal and vastus lateralis muscle perfusion was measured in 10 COPD patients (FEV(1) = 50.5 ± 5.5% predicted) by near-infrared spectroscopy using indocyanine green dye. Patients undertook exercise tests at 75 and 100%WR(peak) breathing either air or heliox and at 115%WR(peak) breathing heliox only. Patients did not exhibit exercise-induced hyperinflation. Normoxic heliox reduced respiratory muscle work and relieved dyspnea across all exercise intensities. During near-maximal exercise, quadriceps and intercostal muscle blood flows were greater, while breathing normoxic heliox compared with air (35.8 ± 7.0 vs. 29.0 ± 6.5 and 6.0 ± 1.3 vs. 4.9 ± 1.2 ml·min(-1)·100 g(-1), respectively; P < 0.05; mean ± SE). In addition, compared with air, normoxic heliox administration increased arterial oxygen content, as well as oxygen delivery to quadriceps and intercostal muscles (from 47 ± 9 to 60 ± 12, and from 8 ± 1 to 13 ± 3 mlO(2)·min(-1)·100 g(-1), respectively; P < 0.05). In contrast, normoxic heliox had neither an effect on systemic nor an effect on quadriceps or intercostal muscle blood flow and oxygen delivery during maximal or supramaximal exercise. Since intercostal muscle blood flow did not decrease by normoxic heliox administration, blood flow redistribution from intercostal to locomotor muscles does not represent a likely mechanism of improvement in locomotor muscle oxygen delivery. Our findings might not be applicable to patients who hyperinflate during exercise.  相似文献   

10.
We previously compared the effects of increased respiratory muscle work during whole body exercise and at rest on diaphragmatic fatigue and showed that the amount of diaphragmatic force output required to cause fatigue was reduced significantly during exercise (Babcock et al., J Appl Physiol 78: 1710, 1995). In this study, we use positive-pressure proportional assist ventilation (PAV) to unload the respiratory muscles during exercise to determine the effects of respiratory muscle work, per se, on exercise-induced diaphragmatic fatigue. After 8-13 min of exercise to exhaustion under control conditions at 80-85% maximal oxygen consumption, bilateral phrenic nerve stimulation using single-twitch stimuli (1 Hz) and paired stimuli (10-100 Hz) showed that diaphragmatic pressure was reduced by 20-30% for up to 60 min after exercise. Usage of PAV during heavy exercise reduced the work of breathing by 40-50% and oxygen consumption by 10-15% below control. PAV prevented exercise-induced diaphragmatic fatigue as determined by bilateral phrenic nerve stimulation at all frequencies and times postexercise. Our study has confirmed that high- and low-frequency diaphragmatic fatigue result from heavy-intensity whole body exercise to exhaustion; furthermore, the data show that the workload endured by the respiratory muscles is a critical determinant of this exercise-induced diaphragmatic fatigue.  相似文献   

11.
We examine whether muscle oxygen consumption (VO2) increases gradually during repeated submaximal isometric contractions. Six subjects made two-legged isometric quadriceps contractions at 30% maximal voluntary contraction for 6 s with 4 s of rest between until exhaustion (58 +/- 8 min). Blood samples were taken from the femoral vein and artery, and blood velocity was recorded by ultrasound-Doppler technique in the femoral artery. Blood flow was calculated from velocity and artery diameter values. Leg VO2 increased sixfold within the 1st min of exercise. A further doubling of the VO2 was seen during the remainder of the exercise, reaching 307 +/- 22 ml/min at exhaustion. This latter increase was due to a 54% increase in blood flow and a 34% increase in oxygen extraction. After 20 min of recovery VO2 was still 75% higher than preexercise values. The results show a twofold increase in energy demand of the working muscle during repeated constant-force isometric contractions. The increased energy cost of contraction is probably localized at the cellular level, and it parallels fatigue determined as decreased force-generating capacity.  相似文献   

12.
To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.  相似文献   

13.
It is not known whether the diameter of peripheral conduit arteries may impose a limitation on muscle blood flow and oxygen uptake at peak effort in humans, and it is not clear whether these arteries are dimensioned in relation to the tissue volume they supply or, rather, to the type and intensity of muscular activity. In this study, eight humans, with a peak pulmonary oxygen uptake of 3.90 +/- 0.31 (range 2.29-5.03) l/min during ergometer cycle exercise, performed one-legged dynamic knee extensor exercise up to peak effort at 68 +/- 7 W (range 55-100 W). Peak values for knee extensor blood flow (thermodilution) and oxygen uptake of 6.06 +/- 0.74 (range 4.75-9.52) l/min and 874 +/- 124 (range 590-1,521) ml/min, respectively, were achieved. Pulmonary oxygen uptake reached a peak of 1.72 +/- 0.19 (range 1.54-2.33) l/min. Diameters of common and profunda femoral arteries determined by ultrasound Doppler were 10.6 +/- 0.4 (range 8.2-12.7) and 6.0 +/- 0.4 (range 4.5-8.0) mm, respectively. Thigh and quadriceps muscle volume measured by computer tomography were 10.06 +/- 0.66 (range 6.18-10.95) and 2.36 +/- 0.19 (range 1.31-3.27) liters, respectively. The common femoral artery diameter, but not that of the profunda branch, correlated with the thigh volume and quadriceps muscle mass. There were no relationships between either of the diameters and the absolute or muscle mass-related resting and peak values of blood flow and oxygen uptake, peak pulmonary oxygen uptake, or peak power output during knee extensor exercise. However, common femoral artery diameter correlated to peak pulmonary oxygen uptake during ergometer cycle exercise. In conclusion, common and profunda femoral artery diameters are sufficient to ensure delivery to the quadriceps muscle. However, the common branch may impose a limitation during ergometer cycle exercise.  相似文献   

14.
Heat stress increases limb blood flow and cardiac output (Q) in humans, presumably in sole response to an augmented thermoregulatory demand of the skin circulation. Here we tested the hypothesis that local hyperthermia also increases skeletal muscle blood flow at rest and during exercise. Hemodynamics, blood and tissue oxygenation, and muscle, skin, and core temperatures were measured at rest and during exercise in 11 males across four conditions of progressive whole body heat stress and at rest during isolated leg heat stress. During whole body heat stress, leg blood flow (LBF), Q, and leg (LVC) and systemic vascular conductance increased gradually with elevations in muscle temperature both at rest and during exercise (r(2) = 0.86-0.99; P < 0.05). Enhanced LBF and LVC were accompanied by reductions in leg arteriovenous oxygen (a-vO(2)) difference and increases in deep femoral venous O(2) content and quadriceps tissue oxygenation, reflecting elevations in muscle and skin perfusion. The increase in LVC occurred despite an augmented plasma norepinephrine (P < 0.05) and was associated with elevations in muscle temperature (r(2) = 0.85; P = 0.001) and arterial plasma ATP (r(2) = 0.87; P < 0.001). Isolated leg heat stress accounted for one-half of the increase in LBF with severe whole body heat stress. Our findings suggest that local hyperthermia also induces vasodilatation of the skeletal muscle microvasculature, thereby contributing to heat stress and exercise hyperemia. The increased limb muscle vasodilatation in these conditions of elevated muscle sympathetic vasoconstrictor activity is closely related to the rise in arterial plasma ATP and local tissue temperature.  相似文献   

15.
Eight healthy men cycled at a work load corresponding to approximately 70% of maximal O2 uptake (VO2max) to fatigue (exercise I). Exercise to fatigue at the same work load was repeated after 75 min of rest (exercise II). Exercise duration averaged 65 and 21 min for exercise I and II, respectively. Muscle (quadriceps femoris) content of glycogen decreased from 492 +/- 27 to 92 +/- 20 (SE) mmol/kg dry wt and from 148 +/- 17 to 56 +/- 17 (SE) mmol/kg dry wt during exercise I and II, respectively. Muscle and blood lactate were only moderately increased during exercise. The total adenine nucleotide pool (TAN = ATP + ADP + AMP) decreased and inosine 5'-monophosphate (IMP) increased in the working muscle during both exercise I (P less than 0.001) and II (P less than 0.01). Muscle content of ammonia (NH3) increased four- and eight-fold during exercise I and II, respectively. The working legs released NH3, and plasma NH3 increased progressively during exercise. The release of NH3 at the end of exercise II was fivefold higher than that at the same time point in exercise I (P less than 0.001, exercise I vs. II). It is concluded that submaximal exercise to fatigue results in a breakdown of the TAN in the working muscle through deamination of AMP to IMP and NH3. The relatively low lactate levels demonstrate that acidosis is not a necessary prerequisite for activation of AMP deaminase. It is suggested that the higher average rate of AMP deamination during exercise II vs. exercise I is due to a relative impairment of ATP resynthesis caused by the low muscle glycogen level.  相似文献   

16.
The purpose of this study was to investigate the effects of carbohydrate ingestion on force output and time to exhaustion using single leg static contractions superimposed with brief periods of electromyostimulation. Six trained male subjects participated in a randomized, counterbalanced, double-blind study. The subjects were randomly assigned to placebo (PL) or carbohydrate (CHO). The subjects in CHO consumed 1 g of carbohydrate per kilogram of body mass loading dose and 0.17 g of carbohydrate per kilogram of body mass every 6 minutes during the exercise protocol. The PL received an equal volume of a solution made of saccharin and aspartame. The exercise protocol consisted of repeated 20-second static contractions of quadriceps muscle at 50% maximal voluntary contraction followed by 40-second rest until failure occurred. Importantly, the force output during quadriceps maximal voluntary contraction strength with superimposed electromyostimulation was measured in the beginning and every 5 minutes during the last 3 seconds of static contractions throughout the exercise protocol. Venous blood samples were taken preexercise, immediately postexercise, and at 5 minutes postexercise and analyzed for blood lactate. Our results indicate that time to exhaustion (PL = 16.0 ± 8.1 minutes; CHO = 29.0 ± 13.1 minutes) and force output (PL = 3,638.7 ± 524.5 N; CHO = 5,540.1 ± 726.1 N) were significantly higher (p < 0.05) in CHO compared with that in PL. Data suggest that carbohydrate ingestion before and during static muscle contractions can increase force output and increase time to exhaustion. Therefore, our data suggest that carbohydrate supplementation before and during resistance exercise might help increase the training volume of athletes.  相似文献   

17.
The purpose of this study was to compare the effects of intermittent and continuous static exercise on muscle perfusion, perfusion heterogeneity, and oxygen extraction. Perfusion and oxygen uptake of quadriceps femoris muscle were measured in 10 healthy men by using positron emission tomography and [(15)O]H(2)O and [(15)O]O(2) first during intermittent static exercise [10% of maximal static force (MSF)] and thereafter during continuous static exercise at the same tension-time level (5% static; 5% of MSF). In 4 of these subjects, perfusion was measured during continuous static exercise with 10% of MSF (10% continuous) instead of the second [(15)O]O(2) measurement. Muscle oxygen consumption was similar during intermittent and 5% continuous, but muscle perfusion was significantly higher during 5% continuous. Consequently, muscle oxygen extraction fraction was lower during 5% continuous. Perfusion was also more heterogeneous during 5% continuous. When exercise intensity was doubled during continuous static exercise (from 5% continuous to 10% continuous), muscle perfusion increased markedly. These results suggest that continuous, low-intensity static exercise decreases muscle oxygen extraction and increases muscle perfusion and its heterogeneity compared with intermittent static exercise at the same relative exercise intensity.  相似文献   

18.
The aim of this study was to determine whether a dose of 300-mg x kg(-1) body mass of sodium bicarbonate would effect a high-intensity, 1-h maximal cycle ergometer effort. Ten male, well-trained [maximum oxygen consumption 67.3 (3.3) ml x kg(-1) x min(-1), mean (SD)] volunteer cyclists acted as subjects. Each undertook either a control (C), placebo (P), or experimental (E) ride in a random, double-blind fashion on a modified, air-braked cycle ergometer, attached to a personal computer to which the work and power data was downloaded at 10 Hz. Fingertip blood was sampled at 10-min intervals throughout the exercise. Blood was also sampled at 1, 3, 5, and 10 min post-exercise. Blood was analysed for lactate, partial pressure of Carbon dioxide and oxygen, pH and plasma bicarbonate (HCO-) concentration. Randomly chosen pairs of subjects were asked to complete as much work as possible during the 60-min exercise periods in an openly competitive situation. The sodium bicarbonate had the desired effect of increasing blood HCO3- prior to the start of the test. The subjects in E completed 950.9 (81.1) kJ of work, which was significantly more (F(2,27) = 5.28, P < 0.01) than during either the C [835.5 (100.2) kJ] or P [839.0 (88.6) kJ] trials. No differences were seen in peak power or in the power:mass ratio between these three groups. The results of this study suggest that sodium bicarbonate may be used to offset the fatigue process during high-intensity, aerobic cycling lasting 60 min.  相似文献   

19.
We studied the effects of a hypocaloric diet (D, n = 24, age: 32.2 +/- 1.4 yr, body mass index: 34.7 +/- 0.5 kg/m2) and a hypocaloric diet associated with exercise training (D + T, n = 25, age: 32.3 +/- 1.3 yr, body mass index: 32.9 +/- 0.4 kg/m2) on muscle metaboreflex control, muscle sympathetic nerve activity (MSNA, microneurography), blood pressure, and forearm blood flow (plethysmography) levels during handgrip exercise at 10% and 30% of maximal voluntary contraction in normotensive obese women. An additional 10 women matched by age and body mass index were studied as a nonadherent group. D or D + T significantly decreased body mass index. D or D + T significantly decreased resting MSNA (bursts/100 heartbeats). The absolute levels of MSNA were significantly lower throughout 10% and 30% exercise after D or D + T, although no change was found in the magnitude of response of MSNA. D + T, but not D, significantly increased resting forearm vascular conductance. D + T significantly increased the magnitude of the response of forearm vascular conductance during 30% exercise. D or D + T significantly increased MSNA levels during posthandgrip circulatory arrest when muscle metaboreflex is isolated. In conclusion, weight loss improves muscle metaboreflex control in obese women. Weight loss reduces MSNA, which seems to be centrally mediated. Weight loss by D + T increases forearm vascular conductance at rest and during exercise in obese individuals.  相似文献   

20.
Our laboratory has recently demonstrated that low-frequency electrical stimulation (ES) of quadriceps muscles alone significantly enhanced glucose disposal rate (GDR) during euglycemic clamp (Hamada T, Sasaki H, Hayashi T, Moritani T, and Nakao K. J Appl Physiol 94: 2107-2112, 2003). The present study is further follow-up to examine the acute metabolic effects of ES to lower extremities compared with voluntary cycle exercise (VE) at identical intensity. In eight male subjects lying in the supine position, both lower leg (tibialis anterior and triceps surae) and thigh (quadriceps and hamstrings) muscles were sequentially stimulated to cocontract in an isometric manner at 20 Hz with a 1-s on-off duty cycle for 20 min. Despite small elevation of oxygen uptake by 7.3 +/- 0.3 ml x kg(-1) x min(-1) during ES, the blood lactate concentration was significantly increased by 3.2 +/- 0.3 mmol/l in initial period (5 min) after the onset of the ES (P < 0.01), whereas VE showed no such changes at identical oxygen uptake (7.5 +/- 0.3 ml x kg(-1) x min(-1)). ES also induced enhanced whole body carbohydrate oxidation as shown by the significantly higher respiratory gas exchange ratio than with VE (P < 0.01). These data indicated increased anaerobic glycolysis by ES. Furthermore, whole body glucose uptake determined by GDR during euglycemic clamp demonstrated a significant increase during and after the cessation of ES for at least 90 min (P < 0.01). This post-ES effect was significantly greater than that of the post-VE period (P < 0.01). These results suggest that ES can substantially enhance energy consumption, carbohydrate oxidation, and whole body glucose uptake at low intensity of exercise. Percutaneous ES may become a therapeutic utility to enhance glucose metabolism in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号