首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nic96p has been isolated previously in a complex together with the nuclear pore proteins Nsp1p, Nup49p and a p54 polypeptide. In a genetic screen for Nsp1p-interacting components, we now find NIC96, as well as a novel gene NUP57 which encodes the p54 protein (called Nup57p). Nup57p which is essential for cell growth contains GLFG repeats in the N-terminal half and heptad repeats in the C-terminal half. The domain organization of Nic96p is more complex: N-terminally located heptad repeats mediate binding to a trimeric Nsp1p-Nup49p-Nup57p complex, but are not required for the formation of this core complex; single amino acid substitutions in the central domain yield thermosensitive mutants, which do not impair interaction with the Nsp1 complex; the C-terminal domain is neither essential nor required for binding to the nucleoporin complex, but strikingly mutations in this part cause synthetic lethality with nsp1 and nup57 mutant alleles. Since a strain in which the Nic96p heptad repeats were deleted shows, similar to nsp1 and nup49 mutants, cytoplasmic mislocalization of a nuclear reporter protein, we propose that the interaction of the heterotrimeric Nsp1p-Nup49p-Nup57p core complex with Nic96p is required for protein transport into the nucleus.  相似文献   

2.
Nucleoporin Nsp1p, which has four predicted coiled-coil regions (coils 1 to 4) in the essential carboxy-terminal domain, is unique in that it is part of two distinct nuclear pore complex (NPC) subcomplexes, Nsp1p-Nup57p-Nup49p-Nic96p and Nsp1p-Nup82p-Nup159p. As shown by in vitro reconstitution, coiled-coil region 2 (residues 673 to 738) is sufficient to form heterotrimeric core complexes and can bind either Nup57p or Nup82p. Accordingly, interaction of Nup82p with Nsp1p coil 2 is competed by excess Nup57p. Strikingly, coil 3 and 4 mutants are still assembled into the core Nsp1p-Nup57p-Nup49p complex but no longer associate with Nic96p. Consistently, the Nsp1p-Nup57p-Nup49p core complex dissociates from the nuclear pores in nsp1 coil 3 and 4 mutant cells, and as a consequence, defects in nuclear protein import are observed. Finally, the nsp1-L640S temperature-sensitive mutation, which maps in coil 1, leads to a strong nuclear mRNA export defect. Thus, distinct coiled-coil regions within Nsp1p-C have separate functions that are related to the assembly of different NPC subcomplexes, nucleocytoplasmic transport, and incorporation into the nuclear pores.  相似文献   

3.
《The Journal of cell biology》1995,130(6):1263-1273
Nsp1p interacts with nuclear pore proteins Nup49p, Nup57p and Nic96p in a stable complex which participates in nucleocytoplasmic transport. An additional p80 component is associated with Nsp1p, but does not co- purify with tagged Nup57p, Nup49p and Nic96p. The p80 gene was cloned and encodes a novel essential nuclear pore protein named Nup82p. Immunoprecipitation of tagged Nup82p reveals that it is physically associated with a fraction of Nsp1p which is distinct from Nsp1p found in a complex with Nup57p, Nic96p and Nup49p. The Nup82 protein can be divided into at least two different domains both required for the essential function, but it is only the carboxy-terminal domain, exhibiting heptad repeats, which binds to Nsp1p. Yeast cells depleted of Nup82p stop cell growth and concomitantly show a defect in poly(A)+RNA export, but no major alterations of nuclear envelope structure and nuclear pore density are seen by EM. This shows that Nsp1p participates in multiple interactions at the NPC and thus has the capability to physically interact with different NPC structures.  相似文献   

4.
Nup116p and Nup100p are highly related yeast GLFG nucleoporins, but only Nup116p is stoichiometrically bound to Gle2p, a previously identified mRNA export factor. A short Gle2p-binding sequence within Nup116p (GLEBS; residues 110-166) is sufficient and necessary to anchor Gle2p at the nuclear pores, whereas the carboxy-terminal domain of Nup116p mediates its own nuclear pore complex (NPC) association. The GLEBS is evolutionarily conserved and found in rat/Xenopus Nup98 and an uncharacterized Caenorhabditis elegans ORF, but is absent from Nup100p. When the GLEBS is deleted from Nup116p, Gle2p dissociates from the nuclear envelope and clusters of herniated nuclear pores form. When the GLEBS is inserted into Nup100p, Nup100p-GLEBS complements both the thermosensitive and NPC-herniated phenotype of nup116- cells, and Gle2p is retargeted concomitantly to the NPCs. Thus, the in vivo function of Gle2p is strictly coupled to the short GLEBS within Nup116p which links this putative mRNA transport factor to the nuclear pores.  相似文献   

5.
Nup159p/Rat7p is an essential FG repeat–containing nucleoporin localized at the cytoplasmic face of the nuclear pore complex (NPC) and involved in poly(A)+ RNA export and NPC distribution. A detailed structural–functional analysis of this nucleoporin previously demonstrated that Nup159p is anchored within the NPC through its essential carboxyl-terminal domain. In this study, we demonstrate that Nup159p specifically interacts through this domain with both Nsp1p and Nup82p. Further analysis of the interactions within the Nup159p/Nsp1p/Nup82p subcomplex using the nup82Δ108 mutant strain revealed that a deletion within the carboxyl-terminal domain of Nup82p prevents its interaction with Nsp1p but does not affect the interaction between Nup159p and Nsp1p. Moreover, immunofluorescence analysis demonstrated that Nup159p is delocalized from the NPC in nup82Δ108 cells grown at 37°C, a temperature at which the Nup82Δ108p mutant protein becomes degraded. This suggests that Nup82p may act as a docking site for a core complex composed of the repeat-containing nucleoporins Nup159p and Nsp1p. In vivo transport assays further revealed that nup82Δ108 and nup159-1/rat7-1 mutant strains have little if any defect in nuclear protein import and protein export. Together our data suggest that the poly(A)+ RNA export defect previously observed in nup82 mutant cells might be due to the loss from the NPCs of the repeat-containing nucleoporin Nup159p.  相似文献   

6.
《The Journal of cell biology》1995,131(6):1699-1713
Nup116p is a member of a family of five yeast nuclear pore complex (NPC) proteins that share an amino terminal region of repetitive tetrapeptide "GLFG" motifs. Previous experiments characterized the unique morphological perturbations that occur in a nup116 null mutant: temperature-sensitive formation of nuclear envelope seals over the cytoplasmic face of the NPC (Wente, S. R., and G. Blobel. 1993. J. Cell Biol. 123:275-284). Three approaches have been taken to dissect the structural basis for Nup116p's role in NPC function. First, deletion mutagenesis analysis of NUP116 revealed that the GLFG region was required for NPC function. This was not true for the other four yeast GLFG family members (Nup49p, Nup57p, Nup100p, and Nup145p). Moreover, deletion of either half of Nup116p's GLFG repeats or replacement of Nup116p's GLFG region with either Nup100p's GLFG region or Nsp1p's FXFG repetitive region abolishes the function of Nup116p. At a semipermissive growth temperature, the cells lacking Nup116p's GLFG region displayed a diminished capacity for nuclear import. Second, overexpression of Nup116p's GLFG region severely inhibited cell growth, rapidly blocked polyadenylated-RNA export, and fragmented the nucleolus. Although it inhibited nuclear export, the overexpressed GLFG region appeared predominantly localized in the cytoplasm and NPC/nuclear envelope structure was not perturbed in thin section electron micrographs. Finally, using biochemical and two-hybrid analysis, an interaction was characterized between Nup116p's GLFG region and Kap95p, an essential yeast homologue of the vertebrate nuclear import factor p97/Imp90/karopherin beta. These data show that Nup116p's GLFG region has an essential role in mediating nuclear transport.  相似文献   

7.
The Nup84p complex consists of five nucleoporins (Nup84p, Nup85p, Nup120p, Nup145p-C, and Seh1p) and Sec13p, a bona fide subunit of the COPII coat complex. We show that a pool of green fluorescent protein-tagged Sec13p localizes to the nuclear pores in vivo, and identify sec13 mutant alleles that are synthetically lethal with nup85Delta and affect the localization of a green fluorescent protein-Nup49p reporter protein. In the electron microscope, sec13 mutants exhibit structural defects in nuclear pore complex (NPC) and nuclear envelope organization. For the assembly of the complex, Nup85p, Nup120p, and Nup145p-C are essential. A highly purified Nup84p complex was isolated from yeast under native conditions and its molecular mass was determined to be 375 kD by quantitative scanning transmission electron microscopy and analytical ultracentrifugation, consistent with a monomeric complex. Furthermore, the Nup84p complex exhibits a Y-shaped, triskelion-like morphology 25 nm in diameter in the transmission electron microscope. Thus, the Nup84p complex constitutes a paradigm of an NPC structural module with distinct composition, structure, and a role in nuclear mRNA export and NPC bio- genesis.  相似文献   

8.
Our previous studies have focused on a family of Saccharomyces cerevisiae nuclear pore complex (NPC) proteins that contain domains composed of repetitive tetrapeptide glycine-leucine-phenylalanine-glycine (GLFG) motifs. We have previously shown that the GLFG regions of Nup116p and Nup100p directly bind the karyopherin transport factor Kap95p during nuclear protein import. In this report, we have further investigated potential roles for the GLFG region in mRNA export. The subcellular localizations of green fluorescent protein (GFP)-tagged mRNA transport factors were individually examined in yeast cells overexpressing the Nup116-GLFG region. The essential mRNA export factors Mex67-GFP, Mtr2-GFP, and Dbp5-GFP accumulated in the nucleus. In contrast, the localizations of Gle1-GFP and Gle2-GFP remained predominantly associated with the NPC, as in wild type cells. The localization of Kap95p was also not perturbed with GLFG overexpression. Coimmunoprecipitation experiments from yeast cell lysates resulted in the isolation of a Mex67p-Nup116p complex. Soluble binding assays with bacterially expressed recombinant proteins confirmed a direct interaction between Mex67p and the Nup116-GLFG or Nup100-GLFG regions. Mtr2p was not required for in vitro binding of Mex67p to the GLFG region. To map the Nup116-GLFG subregion(s) required for Kap95p and/or Mex67p association, yeast two-hybrid analysis was used. Of the 33 Nup116-GLFG repeats that compose the domain, a central subregion of nine GLFG repeats was sufficient for binding either Kap95p or Mex67p. Interestingly, the first 12 repeats from the full-length region only had a positive interaction with Mex67p, whereas the last 12 were only positive with Kap95p. Thus, the GLFG domain may have the capacity to bind both karyopherins and an mRNA export factor simultaneously. Taken together, our in vivo and in vitro results define an essential role for a direct Mex67p-GLFG interaction during mRNA export.  相似文献   

9.
The yeast nucleoporin Nup2p is associated primarily with the nuclear basket of nuclear pore complexes and is required for efficient importin-alpha:beta-mediated nuclear protein import as well as efficient nuclear export of Kap60p/importin-alpha. Residues 1-51 of Nup2p bind tightly to Kap60p and are required for Nup2p function in vivo. We have determined the 2.6 A resolution crystal structure of a complex between this region of Nup2p and the armadillo repeat domain of Kap60p. Nup2p binds along the inner concave groove of Kap60p, but its interaction interface is different from that employed for nuclear localization signal (NLS) recognition although there is some overlap between them. Nup2p binds Kap60p more strongly than NLSs and accelerates release of NLSs from Kap60p. Nup2p itself is released from Kap60p by Cse1p:RanGTP only in the presence of the importin-beta binding (IBB) domain of Kap60p. These data indicate that Nup2p increases the overall rate of nuclear trafficking by coordinating nuclear import termination and importin recycling as a concerted process.  相似文献   

10.
It is not known how Mex67p and Mtr2p, which form a heterodimer essential for mRNA export, transport mRNPs through the nuclear pore. Here, we show that the Mex67p/Mtr2p complex binds to all of the repeat types (GLFG, FXFG, and FG) found in nucleoporins. For this interaction, complex formation between Mex67p and Mtr2p has to occur. MEX67 and MTR2 also genetically interact with different types of repeat nucleoporins, such as Nup116p, Nup159p, Nsp1p, and Rip1p/Nup40p. These data suggest a model in which nuclear mRNA export requires the Mex67p/Mtr2p heterodimeric complex to directly contact several repeat nucleoporins, organized in different nuclear pore complex subcomplexes, as it carries the mRNP cargo through the nuclear pore.  相似文献   

11.
Human Nup93, the homologue of yeast Nic96p, is associated with a 205-kDa protein whose intracellular location and function is unknown. We show here that the yeast open reading frame YJL039c, which is homologous to this human p205, encodes the so far largest yeast nucleoporin. Accordingly, green fluorescent protein (GFP)-tagged YJL039c was localized to the nuclear pores and therefore named Nup192p. Affinity purification of ProtA-Nic96p from glutaraldehyde-fixed spheroplasts reveals association with Nup192p. NUP192 is essential for cell growth. A temperature-sensitive mutant nup192-15 is neither impaired in nuclear import of a SV40 nuclear localization sequence-containing reporter protein nor in mRNA export, but association of Nup49-GFP with nuclear pores is inhibited at the non-permissive temperature. By immunoelectron microscopy, Nup192p-ProtA is seen at the inner site of the nuclear pores, at a distance of 60 +/- 15 nm from the central plane of the pore. This suggests that Nup192p is an evolutionarily conserved structural component of the nuclear pore complex with a preferential location at the inner site of the nuclear membrane.  相似文献   

12.
Saccharomyces cerevisiae Los1p, which is genetically linked to the nuclear pore protein Nsp1p and several tRNA biogenesis factors, was recently grouped into the family of importin/karyopherin-β-like proteins on the basis of its sequence similarity. In a two-hybrid screen, we identified Nup2p as a nucleoporin interacting with Los1p. Subsequent purification of Los1p from yeast demonstrates its physical association not only with Nup2p but also with Nsp1p. By the use of the Gsp1p-G21V mutant, Los1p was shown to preferentially bind to the GTP-bound form of yeast Ran. Furthermore, overexpression of full-length or N-terminally truncated Los1p was shown to have dominant-negative effects on cell growth and different nuclear export pathways. Finally, Los1p could interact with Gsp1p-GTP, but only in the presence of tRNA, as revealed in an indirect in vitro binding assay. These data confirm the homology between Los1p and the recently identified human exportin for tRNA and reinforce the possibility of a role for Los1p in nuclear export of tRNA in yeast.  相似文献   

13.
The yeast Saccharomyces cerevisiae nucleoporin Nup116p serves as a docking site for both nuclear import and export factors. However, the mechanism for assembling Nup116p into the nuclear pore complex (NPC) has not been resolved. By conducting a two-hybrid screen with the carboxy (C)-terminal Nup116p region as bait, we identified Nup82p. The predicted coiled-coil region of Nup82p was not required for Nup116p interaction, making the binding requirements distinct from those for the Nsp1p-Nup82p-Nup159p subcomplex (N. Belgareh, C. Snay-Hodge, F. Pasteau, S. Dagher, C. N. Cole, and V. Doye, Mol. Biol. Cell 9:3475-3492, 1998). Immunoprecipitation experiments using yeast cell lysates resulted in the coisolation of a Nup116p-Nup82p subcomplex. Although the absence of Nup116p had no effect on the NPC localization of Nup82p, overexpression of C-terminal Nup116p in a nup116 null mutant resulted in Nup82p mislocalization. Moreover, NPC localization of Nup116p was specifically diminished in a nup82-Delta108 mutant after growth at 37 degrees C. Immunoelectron microscopy analysis showed Nup116p was localized on both the cytoplasmic and nuclear NPC faces. Its distribution was asymmetric with the majority at the cytoplasmic face. Taken together, these results suggest that Nup82p and Nup116p interact at the cytoplasmic NPC face, with nucleoplasmic Nup116p localization utilizing novel binding partners.  相似文献   

14.
The nucleoporins Nup60p, Nup2p, and Nup1p form part of the nuclear basket structure of the Saccharomyces cerevisiae nuclear pore complex (NPC). Here, we show that these necleoporins can be isolated from yeast extracts by affinity chromatography on karyopherin Kap95p-coated beads. To characterize Nup60p further, Nup60p-coated beads were used to capture its interacting proteins from extracts. We find that Nup60p binds to Nup2p and serves as a docking site for Kap95p-Kap60p heterodimers and Kap123p. Nup60p also binds Gsp1p-GTP and its guanine nucleotide exchange factor Prp20p, and functions as a Gsp1p guanine nucleotide dissociation inhibitor by reducing the activity of Prp20p. Yeast lacking Nup60p exhibit minor defects in nuclear export of Kap60p, nuclear import of Kap95p-Kap60p-dependent cargoes, and diffusion of small proteins across the NPC. Yeast lacking Nup60p also fail to anchor Nup2p at the NPC, resulting in the mislocalization of Nup2p to the nucleoplasm and cytoplasm. Purified Nup60p and Nup2p bind each other directly, but the stability of the complex is compromised when Kap60p binds Nup2p. Gsp1p-GTP enhances by 10-fold the affinity between Nup60p and Nup2p, and restores binding of Nup2p-Kap60p complexes to Nup60p. The results suggest a dynamic interaction, controlled by the nucleoplasmic concentration of Gsp1p-GTP, between Nup60p and Nup2p at the NPC.  相似文献   

15.
《The Journal of cell biology》1996,133(6):1141-1152
The amino-terminal domain of Nic96p physically interacts with the Nsp1p complex which is involved in nucleocytoplasmic transport. Here we show that thermosensitive mutations mapping in the central domain of Nic96p inhibit nuclear pore formation at the nonpermissive temperature. Furthermore, the carboxyterminal domain of Nic96p functionally interacts with a novel nucleoporin Nup188p in an allele-specific fashion, and when ProtA-Nup188p was affinity purified, a fraction of Nic96p was found in physical interaction. Although NUP188 is not essential for viability, a null mutant exhibits striking abnormalities in nuclear envelope and nuclear pore morphology. We propose that Nic96p is a multivalent protein of the nuclear pore complex linked to several nuclear pore proteins via its different domains.  相似文献   

16.
The importin alpha.beta heterodimer mediates nuclear import of proteins containing classical nuclear localization signals. After carrying its cargo into the nucleus, the importin dimer dissociates, and Srp1p (the yeast importin alpha subunit) is recycled to the cytoplasm in a complex with Cse1p and RanGTP. Nup2p is a yeast FXFG nucleoporin that contains a Ran-binding domain. We find that export of Srp1p from the nucleus is impaired in Deltanup2 mutants. Also, Srp1p fusion proteins accumulate at the nuclear rim in wild-type cells but accumulate in the nuclear interior in Deltanup2 cells. A deletion of NUP2 shows genetic interactions with mutants in SRP1 and PRP20, which encodes the Ran nucleotide exchange factor. Srp1p binds directly to an N-terminal domain of Nup2p. This region of Nup2p is sufficient to allow accumulation of an Srp1p fusion protein at the nuclear rim, but the C-terminal Ran-binding domain of Nup2p is required for efficient Srp1p export. Formation of the Srp1p.Cse1p. RanGTP export complex releases Srp1p from its binding site in Nup2p. We propose that Nup2p may act as a scaffold that facilitates formation of the Srp1p export complex.  相似文献   

17.
We have identified a specific karyopherin docking complex within the yeast nuclear pore complex (NPC) that contains two novel, structurally related nucleoporins, Nup53p and Nup59p, and the NPC core protein Nup170p. This complex was affinity purified from cells expressing a functional Nup53p–protein A chimera. The localization of Nup53p, Nup59p, and Nup170p within the NPC by immunoelectron microscopy suggests that the Nup53p-containing complex is positioned on both the cytoplasmic and nucleoplasmic faces of the NPC core. In association with the isolated complex, we have also identified the nuclear transport factor Kap121p (Pse1p). Using in vitro binding assays, we showed that each of the nucleoporins interacts with one another. However, the association of Kap121p with the complex is mediated by its interaction with Nup53p. Moreover, Kap121p is the only β-type karyopherin that binds Nup53p suggesting that Nup53p acts as a specific Kap121p docking site. Kap121p can be released from Nup53p by the GTP bound form of the small GTPase Ran. The physiological relevance of the interaction between Nup53p and Kap121p was further underscored by the observation that NUP53 mutations alter the subcellular distribution of Kap121p and the Kap121p- mediated import of a ribosomal L25 reporter protein. Interestingly, Nup53p is specifically phosphorylated during mitosis. This phenomenon is correlated with a transient decrease in perinuclear-associated Kap121p.  相似文献   

18.
Nup116p is a GLFG nucleoporin involved in RNA export processes. We show here that Nup116p physically interacts with the Nup82p-Nsp1p-Nup159p nuclear pore subcomplex, which plays a central role in nuclear mRNA export. For this association, a sequence within the C-terminal domain of Nup116p that includes the conserved nucleoporin RNA-binding motif was sufficient and necessary. Consistent with this biochemical interaction, protein A-Nup116p and the protein A-tagged Nup116p C-terminal domain, like the members of the Nup82p complex, localized to the cytoplasmic side of the nuclear pore complex, as revealed by immunogold labeling. Finally, synthetic lethal interactions were found between mutant alleles of NUP116 and all members of the Nup82p complex. Thus, Nup116p consists of three independent functional domains: 1) the C-terminal part interacts with the Nup82p complex; 2) the Gle2p-binding sequence interacts with Gle2p/Rae1p; and 3) the GLFG domain interacts with shuttling transport receptors such as karyopherin-beta family members.  相似文献   

19.
During nuclear import, cytosolic transport factors move through the nuclear pore complex (NPC) to the nuclear compartment. Kap95p is required during import for docking the nuclear localization signal-receptor and ligand to the NPC. Recycling of this factor back to the cytoplasm is necessary for continued rounds of import; however, the mechanism for Kap95p recycling is unknown. We have determined that recycling of Kap95p requires a nuclear export signal (NES). A region containing the NES in Kap95p was sufficient to mediate active nuclear export in a microinjection assay. Moreover, the NES was necessary for function. Mutation of the NES in Kap95p resulted in a temperaturesensitive import mutant, and immunofluorescence microscopy experiments showed that the mutated Kap95p was not recycled but instead localized in the nucleus and at the nuclear envelope. Srp1p, the yeast nuclear localization signal-receptor, also accumulated in the nuclei of the arrested kap95 mutant cells. Wild-type and NES-mutated Kap95p both bound Gsp1p (the yeast Ran/TC4 homologue), Srp1p, and the FXFG repeat region of the nucleoporin Nup1p. In contrast, the NES mutation abolished Kap95p interaction with the GLFG repeat regions from the nucleoporins Nup116p and Nup100p. In vivo interaction was demonstrated by isolation of Kap95p from yeast nuclear lysates in either protein A–tagged Nup116p or protein A–tagged Nup100p complexes. The protein A–tagged Nup116p complex also specifically contained Gle2p. These results support a model in which a step in the recycling of Kap95p is mediated by interaction of an NES with GLFG regions. Analysis of genetic interactions suggests Nup116p has a primary role in Kap95p recycling, with Nup100p compensating in the absence of Nup116p. This finding highlights an important role for a subfamily of GLFG nucleoporins in nuclear export processes.  相似文献   

20.
Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin alpha and importin beta. Srp1p, the Saccharomyces cerevisiae homologue of importin alpha, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin alpha-importin and beta and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin beta) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin alpha-importin beta complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号