首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syringostatin is a newly discovered phytotoxin produced by a phytopathogenic bacterium Pseudomonas syringae pv. syringae lilac isolate. The effects of syringostatin and the similar phytotoxins, syringomycin and syringotoxin, on H-ATPase activity were investigated using cultured mung bean ( Vigna radiata L. cv. Ryokuto) cells or plasma membrane vesicles isolated from mung bean hypocotyls. 31P-NMR analysis of cultured cells treated with syringostatin revealed that the cytoplasmic pH was decreased. When plasma membrane was prepared by a two-step method (Dextran gradient followed by a sucrose gradient). syringostatin, syringomycin and syringotoxin inhibited the H+-ATPase activity in a dose-dependent manner. In contrast, these toxins stimulated H+-ATPase activity when plasma membrane was prepared by a one-step method (sucrose gradient). While these toxins inhibited the H+-ATPase activity of inside-out plasma membrane vesicles, the H+-ATPase activity of right-side-out vesicles was stimulated. The detergent. Triton X-100, abolished this stimulatory effect of the toxins on the H+-ATPase of right-side-out vesicles and of one-step purified plasma membrane. The toxins also inhibited the activity of the plasma membrane H+-ATPase solubilized with deoxycholate and Zwittergent 3–14. Taken together, these results indicate that these toxins exert their effects partly by a detergent-like action on the plasma membrane and partly by inhibition of the enzyme.  相似文献   

2.
Abstract The influence of cysteine and serine in the production of syringomycin by Pseudomonas syringae pv. syringae has been studied. Both amino acids increased toxin synthesis in wild-type strains, although cysteine has a higher stimulatory effect than serine. To corroborate the role of cysteine in the production of syringomycin, a Cys mutant of P. syringae pv. syringae was isolated by transpositional mutagenesis with Tn5; this Cys mutant did not produce syringomycin. Nevertheless, and after the addition of high concentrations of cysteine, the cys ∷Tn5 mutant recovered its ability to produce syringomycin. On the other hand, the addition of serine did not return the production of syringomycin to the sys ∷ Tn5 strain: all these data indicated that cysteine modulates the synthesis of syringomycin in P. syringae pv. syringae positively.  相似文献   

3.
Syringomycin, a peptide toxin produced by the phytopathogen Pseudomonas syringae pv syringae preferentially stimulated (2-fold) the vanadate-sensitive ATPase activity associated with the plasma membrane of red beet storage tissue. The toxin had a very slight effect on the tonoplast ATPase and had no detectable effect on the mitochondrial ATPase. Optimal stimulation was achieved with 10 to 50 micrograms of syringomycin per 25 micrograms of membrane protein. Treatment of membranes with 0.1% (weight/volume) deoxycholate eliminated the activation effect, and enzyme solubilized with Zwittergent 3-14 was not affected by syringomycin. ATPase activity was activated to the same extent at KCl concentrations ranging from 0 to 50 millimolar. Valinomycin, nigericin, carbonylcyanide p-trifluoromethoxyphenylhydrazone, and gramicidin did not increase the plasma membrane ATPase activity. However, these ionophores did not hinder the ability of syringomycin to stimulate the activity. We suggest that syringomycin does not increase ATPase activity by altering membrane ion gradients nor directly interacting with the enzyme, but possibly through regulatory effectors or covalent modification of the enzyme.  相似文献   

4.
A mutational analysis of lesion-forming ability was undertaken in Pseudomonas syringae pv. syringae B728a, causal agent of bacterial brown spot disease of bean. Following a screen of 6,401 Tn5-containing derivatives of B728a on bean pods, 26 strains that did not form disease lesions were identified. Nine of the mutant strains were defective in the ability to elicit the hypersensitive reaction (HR) and were shown to contain Tn5 insertions within the P. syringae pv. syringae hrp region. Ten HR+ mutants were defective in the production of the toxin syringomycin, and a region of the chromosome implicated in the biosynthesis of syringomycin was deleted in a subset of these mutants. The remaining seven lesion-defective mutants retained the ability to produce protease and syringomycin. Marker exchange mutagenesis confirmed that the Tn5 insertion was causal to the mutant phenotype in several lesion-defective, HR+ strains. KW239, a lesion- and syringomycin-deficient mutant, was characterized at the molecular level. Sequence analysis of the chromosomal region flanking the Tn5 within KW239 revealed strong similarities to a number of known Escherichia coli gene products and DNA sequences: the nusA operon, including the complete initiator tRNA(Met) gene, metY; a tRNA(Leu) gene; the tpiA gene product; and the MrsA protein. Removal of sequences containing the two potential tRNA genes prevented restoration of mutant KW239 in trans. The Tn5 insertions within the lesion-deficient strains examined, including KW239, were not closely linked to each other or to the lemA or gacA genes previously identified as involved in lesion formation by P. syringae pv. syringae.  相似文献   

5.
The activity of some phytotoxic metabolites of Pseudomonas syringae pv. syringae Van Hall strains B359 and B301 on in vivo and in vitro systems of H+-transport across the plasma membrane of maize (Zea mays L., hybrid Paolo) was investigated. In particular syringomycin, the first lipodepsinonapeptide isolated from Pss and already studied in plants and yeasts for its effects on several physiological systems, was compared with the recently described lipodepsipeptides with 22 or 25 amino acid residues, so called syringopeptins. The in vivo activity of the phytotoxins was tested on fusicoccin-stimulated H?-extrusion from cuttings of maize roots, which was inhibited by both types of toxins, with syringomycin more efficient than the syringopeptins. In vitro the H+-ATPase activity of predominantly right-side-out plasma membrane vesicles purified by two-phase partitioning was stimulated by 10 μM syringomycin and inhibited by higher levels, in agreement with the results of others with preparations of dicotyledons. Also the inhibition of the phosphohydrolytic activity of inside-out vesicles of mung bean plasma membrane was confirmed for maize. In both types of vesicles the syringopeptirts were better inhibitors than syringomycin. The pH gradient formed on addition of ATP to predominantly (25% latency) inside-out vesicles was immediately and completely collapsed by syringomycin and syringopeptins; H+-pumping was prevented if the toxins were added before ATP. The inhibition was concentration dependent, but at very low concentrations the effect was inverted. The results of the present investigation, carried out with maize preparations, confirm and extend the evidence so far obtained with dicotyledons in favour of the plasma membrane as an important site of interaction of syringomycin with the plant cell. They also indicate that, except for some details, the effects of syringopeptins at the level of the plasma membrane are the same as those of syringomycin.  相似文献   

6.
Abstract Saccharomyces cerevisiae genes encoding functions necessary for inhibition by the Pseudomonas syringae pv. syringae cyclic lipodepsipeptide, syringomycin-E, were identified by mutant analyses. Syringomycin-E-resistant mutants were isolated, shown to contain single recessive mutations, and divided into eight gene complementation groups. Representative strains from five groups were resistant to nystatin, and deficient in the plasma membrane lipid, ergosterol. All of the mutant strains were resistant to the related cyclic lipodepsipeptides, syringotoxin and syringostatin. The findings show that: 1) at least eight gene-encoded functions participate in the inhibitory response to syringomycin; 2) ergosterol is important for this response; 3) the three related lipodepsipeptides have similar modes of action.  相似文献   

7.
8.
Abstract Syringomycin and syringopeptin are lipodepsipeptide phytotoxins produced by Pseudomonas syringae pv. syringae . Four syr genes were identified previously and hypothesized to be involved in the regulation ( syrA ), biosynthesis ( syrB and syrC ), or export ( syrD ) of syringomycin. This study determines the influence of syr mutations on the composition of phytotoxic metabolites produced by P. syringae pv. syringae strain B301D-R. Levels of syringomycin and syringopeptin produced in liquid cultures were estimated by reverse phase HPLC analyses and differential antimicrobial assays. Significant quantities of syringopeptin were produced by both syrB and syrC mutants despite their inability to produce syringomycin. Only trace quantities of both lipodepsipeptides were produced by syrA and syrD mutants of P. syringae pv. syringae . These results indicate that syringomycin and syringopeptin are synthesized by separate pathways, but may share common mechanisms for secretion and regulation.  相似文献   

9.
Syringomycin E is an antifungal cyclic lipodepsinonapeptide produced by Pseudomonas syringae pv. syringae. To understand the mechanism of action of syringomycin E, a novel resistant Saccharomyces cerevisiae strain, BW7, was isolated and characterized. Lipid analyses revealed that BW7 contained only the hydrophobic subspecies of sphingolipids that are normally minor components in wild type strains. This aberrant sphingolipid composition was the result of lack of alpha-hydroxylation of the amide-linked very long chain fatty acids, suggesting a defective sphingolipid alpha-hydroxylase encoded by the FAH1 gene. A yeast strain that lacks the FAH1 gene was resistant to syringomycin E, and failed to complement BW7. These results demonstrate that BW7 carries a mutation in the FAH1 gene, and that the lack of alpha-hydroxylated very long chain fatty acids in yeast sphingolipids confers resistance to syringomycin E.  相似文献   

10.
The basal proton motive force (PMF) levels and the influence of the bacteriocin nisin on the PMF were determined in Listeria monocytogenes Scott A. In the absence of nisin, the interconversion of the pH gradient (Z delta pH) and the membrane potential (delta psi) led to the maintenance of a fairly constant PMF at -160 mV over the external pH range 5.5 to 7.0. The addition of nisin at concentrations of greater than or equal to 5 micrograms/ml completely dissipated PMF in cells at external pH values of 5.5 and 7.0. With 1 microgram of nisin per ml, delta pH was completely dissipated but delta psi decreased only slightly. The action of nisin on PMF in L. monocytogenes Scott A was both time and concentration dependent. Valinomycin depleted only delta pH, whereas nigericin and carbonyl cyanide m-chlorophenylhydrazone depleted only delta psi, under conditions in which nisin depleted both. Four other L. monocytogenes strains had basal PMF parameters similar to those of strain Scott A. Nisin (2.5 micrograms/ml) also completely dissipated PMF in these strains.  相似文献   

11.
Sequencing of an approximately 3.9-kb fragment downstream of the syrD gene of Pseudomonas syringae pv. syringae strain B301D revealed that this region, designated sypA, codes for a peptide synthetase, a multifunctional enzyme involved in the thiotemplate mechanism of peptide biosynthesis. The translated protein sequence encompasses a complete amino acid activation module containing the conserved domains characteristic of peptide synthetases. Analysis of the substrate specificity region of this module indicates that it incorporates 2,3-dehydroaminobutyric acid into the syringopeptin peptide structure. Bioassay and high performance liquid chromatography data confirmed that disruption of the sypA gene in strain B301D resulted in the loss of syringopeptin production. The contribution of syringopeptin and syringomycin to the virulence of P. syringae pv. syringae strain B301D was examined in immature sweet cherry with sypA and syrB1 synthetase mutants defective in the production of the two toxins, respectively. Syringopeptin (sypA) and syringomycin (syrB1) mutants were reduced in virulence 59 and 26%, respectively, compared with the parental strain in cherry, whereas the syringopeptin-syringomycin double mutant was reduced 76% in virulence. These data demonstrate that syringopeptin and syringomycin are major virulence determinants of P. syringae pv. syringae.  相似文献   

12.
Two types of necrosis-inducing lipodepsipeptide toxins, called syringomycin and syringopeptin, are major virulence factors of Pseudomonas syringae pv. syringae strain B301D. A previous study showed that a locus, called syrA, was required for both syringomycin production and plant pathogenicity, and the syrA locus was speculated to encode a regulator of toxin production. In this study, sequence analysis of the 8-kb genomic DNA fragment that complements the syrA phenotype revealed high conservation among a broad spectrum of fluorescent pseudomonads. The putative protein encoded by open reading frame 4 (ORF4) (1,299 bp) in the syrA locus region exhibited 85% identity to ArgA, which is involved in arginine biosynthesis in Pseudomonas aeruginosa. Growth of strain W4S2545, the syrA mutant, required supplementation of N minimal medium with arginine. Similarly, syringomycin production of syrA mutant W4S2545 was restored by the addition of arginine to culture media. Furthermore, the insertion of Tn5 in the genome of the syrA mutant W4S2545 was localized between nucleotides 146 and 147 in ORF4, and syringomycin production was complemented in trans with the wild-type DNA fragment containing intact ORF4. These results demonstrate that the syrA locus is the argA gene of P. syringae pv. syringae and that argA is directly involved in arginine biosynthesis and therefore indirectly affects syringomycin production because of arginine deficiency.  相似文献   

13.
Using the planar lipid bilayer technique, the dependence of properties of ion channels formed by syringomycin E on bath ion composition (electrolyte concentration and pH) and on the applied potential was studied. Time courses of the membrane current in field reversal experiments with 1M NaCl, pH 6 in the bathing solution were similar to the time courses observed with a bathing solution of 0.1 M NaCl, pH 2: there was no increase (decrease) of the membrane current at positive (negative) values of the transmembrane potential. However, kinetic curves were different at 0.1 M. NaCl, pH 6 and pH 9. At pH 6 there was an abrupt increase (decrease) of the membrane current over the time at the positive (negative) values of the applied potential. At pH 9 there was a reversed current response. The results indicate that charged groups are likely to be responsible for opening or closing the channel facing the water phase. Based on these data, a model is proposed describing the potential dependent opening and closing of ion channels formed by syringomycin E.  相似文献   

14.
The syrA and syrB genes involved in syringomycin production in Pseudomonas syringae pv. syringae B301D were identified from an EcoRI-pLAFR3 cosmid library and then physically and functionally analyzed in relation to plant pathogenicity. Homologous recombination of the genes required for syringomycin production from cosmids pGX183 (syrA) and pGX56 (syrB), respectively, introduced into nontoxigenic (Tox-) Tn5 mutants W4S2545 and W4S770 resulted in the concomitant restoration of toxin production and full virulence. The disease indices of the Tox+ strains obtained by recombination of the cloned, homologous DNA into the corresponding Tn5 mutant were essentially equivalent to that of strain B301D-R and significantly higher than those of W4S2545 and W4S770. A 12-kilobase (kb) EcoRI fragment from pGX183 was subcloned (i.e., pGX15) and found to contain the sequences necessary for syringomycin production. A map of pGX15 prepared by a combination of restriction endonuclease digestions and Tn5 mutagenesis showed that the syrA sequence was 2.3 to 2.8 kb. Marker exchange of syrA::Tn5 from pGX15 into B301D-R yielded nonpathogenic phenotypes, indicating that syrA is a regulatory gene since it is necessary for both syringomycin production and pathogenicity. The 4.9-kb EcoRI fragment from pGX56 was subcloned (i.e., pGX4) and shown to carry the syrB sequence which was 2.4 to 3.3 kb. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of protein extracts from B301D-R associated five proteins, ranging from approximately 130,000 to approximately 470,000 in molecular weight, with syringomycin production. The syrA and syrB genes were required for the formation of proteins SR4 (approximately 350,000) and SR5 (approximately 130,000), which are believed to be components of the syringomycin synthetase complex.  相似文献   

15.
We studied effects of toxins produced by a bacterium Pseudomonas syringae pv. syringae on the conductance of bilayer lipid membranes (BLM). The used toxins were as follows: syringopeptin 22A (SP22A), syringomycin E (SPE), syringostatin A (SSA), syringotoxin B (STB), and methylated syringomycin E (CH3-SRE). All toxins demonstrated channel-forming activity. The threshold sequence for toxin activity was SP22A > SRE approximately equal to SSA > STB > CH3-SRE, and this sequence was independent of lipid membrane composition, and NaCl concentration (pH 6) in the membrane bathing solution (in the range of 0.1-1.0 M). This sequence correlated with relative bioactivities of toxins. In addition, SRE demonstrated a more potent antifungal activity than CH3-SRE. These findings suggest that ion channel formation may underlie the bioactivities of the above toxins. The properties of single ion channels formed by the toxins in BLMs were found to be similar, which points to the similarity in the channel structures. In negatively charged membranes, bathed with diluted electrolyte solutions (0.1 M NaCl), the channels were seen to open with positive transmembrane potentials (V) (from the side of toxin addition), and close with negative potentials. In uncharged membranes the opposite response to a voltage sign was observed. Increasing the NaCl concentration up to 1 M unified the voltage sensitivity of channels in charged and uncharged membranes: channels opened with negative V, and closed with positive V. With all systems, the voltage current curves of single channels were similarly superlinear in the applied voltage and asymmetric in its sign. It was found that the single channel conductance of STB and SSA was higher than that of other toxin channels. All the toxins formed at least two types of ion channels that were multiple by a factor of either 6 or 4 in their conductance. The results are discussed in terms of the structural features of toxin molecules.  相似文献   

16.
17.
Five bacterial species were transformed using particle gun-technology. No pretreatment of cells was necessary. Physical conditions (helium pressure, target cell distance and gap distance) and biological conditions (cell growth phase, osmoticum concentration, and cell density) were optimized for biolistic transformation of Escherichia coli and these conditions were then used to successfully transform Agrobacterium tumefaciens, Erwinia amylovora, Erwinia stewartii and Pseudomonas syringae pv. syringae. Transformation rates for E. coli were 10(4) per plate per 0.8 micrograms DNA. Although transformation rates for the other species were low (less than 10(2) per plate per 0.8 micrograms DNA), successful transformation without optimization for each species tested suggests wide utility of biolistic transformation of prokaryotes. E. coli has proven to be a useful model system to determine the effects of relative humidity, particle size and particle coating on efficiency of biolistic transformation.  相似文献   

18.
Pseudomonas syringae pv. syringae strain B359 secreted two main lipodepsipeptides (LDPs), syringomycin E (SRE) and syringopeptin 25A (SP25A), together with at least four types of cell wall-degrading enzymes (CWDEs). In antifungal bioassays, the purified toxins SRE and SP25A interacted synergistically with chitinolytic and glucanolytic enzymes purified from the same bacterial strain or from the biocontrol fungus Trichoderma atroviride strain P1. The synergism between LDPs and CWDEs occurred against all seven different fungal species tested and P. syringae itself, with a level dependent on the enzyme used to permeabilize the microbial cell wall. The antifungal activity of SP25A was much more increased by the CWDE action than was that of the smaller SRE, suggesting a stronger antifungal role for SP25A. In vivo biocontrol assays were performed by using P. syringae alone or in combination with T. atroviride, including a Trichoderma endochitinase knock-out mutant in place of the wild type and a chitinase-specific enzyme inhibitor. These experiments clearly indicate that the synergistic interaction LDPs-CWDEs is involved in the antagonistic mechanism of P. syringae, and they support the concept that a more effective disease control is given by the combined action of the two agents.  相似文献   

19.
The ecological mechanism of survival of Aeromonas salmonicida, the bacterial pathogen of fish furunculosis, in river water was investigated by laboratory-based experiments with two virulent strains (which were autoagglutinating) and two virulent strains (which were nonagglutinating). A difference in net electrical charge of A. salmonicida cells was detected by electrophoresis; cells of the virulent strains were negative, whereas cells of the avirulent strains were positive. Despite the loss of viable cells within a week in distilled water and physiological saline (0.85% sodium chloride), the cells of the virulent strains survived for more than 15 weeks in the presence of diluted humic acid (10 micrograms/ml), tryptone (10 micrograms/ml), and cleaned river sand (100 g/100 ml of medium), but loss of viable cells occurred within 5 weeks in the absence of sand. The cells of the avirulent strains lost viability within 2 weeks with no relation to the presence of sand. Using ion-exchange columns, humic acid and the amino acids of tryptone were found to be anionic and cationic in water (pH 7.0), respectively. Sand particles had a high capacity to adsorb humic acid alone and amino acid-humic acid complexes. Thirty to fifty times the environmental concentration of amino acids (10 micrograms/ml) were accumulated on the surface of sand particles, thereby permitting only bacterial cells carrying net negative electrical charges (virulent cells) to survive for a long period on the surface of the sand particles. These electrostatic interrelationships among river sand, humic acid, and bacterial cells are closely implicated in the mechanism of long-term survival of virulent A. salmonicida in river sediments.  相似文献   

20.
Two strains (B728a and Y37) of the phytopathogenic bacterium Pseudomonas syringae pv. syringae isolated from bean (Phaseolus vulgaris) plants were shown to produce in culture both syringomycin, a lipodepsinonapeptide secreted by the majority of the strains of the bacterium, and a new form of syringopeptin, SP(22)Phv. The structure of the latter metabolite was elucidated by the combined use of mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy and chemical procedures. Comparative phytotoxic and antimicrobial assays showed that SP(22)Phv did not differ substantially from the previously characterized syringopeptin 22 (SP(22)) as far as toxicity to plants was concerned, but was less active in inhibiting the growth of the test fungi Rhodotorula pilimanae and Geotrichum candidum and of the Gram-positive bacterium Bacillus megaterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号