首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
Salivary enzyme, glucose oxidase (GOX) from the caterpillar Helicoverpa zea, catalyzes the conversion of glucose to gluconic acid and hydrogen peroxide. Because hydrogen peroxide has well-known antimicrobial properties, we examined whether caterpillar labial saliva could reduce the infectivity of bacterial pathogens. We examined the effects of caterpillar saliva on the growth of two bacteria species Serratia marcescens and Pseudomonas aeruginosa. Wells formed in LB agar contained a solution of salivary gland extract (Sx) and glucose, GOX and glucose, Sx only, GOX only, or glucose only. After 18 h of incubation, the diameter of cleared bacteria was measured. Wells treated with only GOX, Sx, or glucose showed no measurable area of clearing, while wells treated with GOX with glucose or Sx with glucose had considerable clearing. To determine if saliva could provide protection to caterpillars in vivo, a surgery was performed on caterpillars that prevented the secretion of labial saliva. Caterpillars were fed a diet containing either no added bacteria or treated with high levels of S. marcescens or P. aeruginosa. Caterpillars that could not secrete saliva had significantly higher levels of mortality when feeding on diet treated with either bacterium than caterpillars that could secrete saliva when feeding on equal levels of bacteria-treated diet. Our evidence demonstrates for the first time that insect saliva in situ can provide protection against bacterial pathogens and that the salivary enzyme GOX appears to provide the antimicrobial properties.  相似文献   

2.
We investigated the change of the glucose oxidase (GOX) activity in labial salivary glands of Helicoverpa armigera larvae fed with the artificial diet or host plant tobacco and the major factors responsible for such a change. Throughout larval development, the labial salivary GOX activities in caterpillars reared on the artificial diet were remarkably higher than those fed with the plant. After fifth-instar plant-fed caterpillars were transferred to the artificial diet, their labial salivary GOX activity increased quickly, which was closely correlated with the time spent feeding on the artificial diet. The total sugar content of the artificial diet was 68 times higher than that of the tobacco leaves. We hypothesized that sugars and secondary metabolites are the possible causes of induction of GOX activity. When fifth-instar caterpillars were fed with tobacco leaves coated with glucose or sucrose, their labial salivary GOX activity was significantly higher than those fed with leaves without sugar coating. Following native PAGE, 1 single band of the labial salivary GOX was observed in all the caterpillars fed with different diets, implying that only the activity of the isoenzyme was changed in response to different diets. Furthermore, the labial salivary GOX activity was determined after caterpillars were fed with artificial diets containing chlorogenic acid, rutin, and quercetin. The results showed that all these phenolic compounds had no effect on the GOX activity. We conclude that sugar in diets was a major factor influencing the labial salivary GOX activity of the larvae. Arch. Insect Biochem. Physiol. 2008.  相似文献   

3.
4.
Caterpillars of the notodontid Oedemasia leptinoides (formerly Schizura) use their mandibles to cut shallow girdles that encircle the petioles and stems of tree hosts. When girdles are complete, the larvae bathe the girdle surface with fluid. We test whether the fluid originates from the labial salivary glands or ventral eversible gland by blocking the openings to the glands and observing whether fluid is still released onto the girdles. Only larvae with functional labial salivary glands anointed girdles with fluid. Analysis of girdle rinses for a prominent salivary enzyme, glucose oxidase, confirmed that larvae apply saliva and documented that application occurs primarily at the end of girdling. We propose that girdling by notodontids, together with related furrowing and leaf-clipping behaviors exhibited by diverse caterpillar groups, serve at least in part to introduce salivary components to exposed vascular tissues; these compounds presumably function to suppress plant defensive responses normally elicited by caterpillar feeding.  相似文献   

5.
6.
Caterpillars are faced with nutritional challenges when feeding on plants. In addition to harmful secondary metabolites and protein- and water-limitations, tissues may be carbohydrate-rich which may attenuate optimal caterpillar performance. Therefore, caterpillars have multiple strategies to cope with surplus carbohydrates. In this study, we raise the possibility of a pre-ingestive mechanism to metabolically deal with excess dietary sugars. Many Noctuid caterpillars secrete the labial salivary enzyme glucose oxidase (GOX), which oxidizes glucose to hydrogen peroxide and gluconate, a nutritionally unavailable carbohydrate to the insect. Beet armyworm, Spodoptera exigua, larvae were restricted to diets varying in protein to digestible carbohydrate (P:C) ratio (42p:21c; 33p:30c; 21p:42c) and total nutrient concentration (42% and 63%). High mortality and longer developmental time were observed when caterpillars were reared on the C-biased, P-poor diet (21p:42c). As the carbohydrate content of the diet increased, caterpillars egested excess glucose and a diet-dependent difference in assimilated carbohydrates and pupal biomass was not observed, even though caterpillars restricted to the C-biased diet (21p:42c) accumulated greater pupal lipid reserves. Larval labial salivary GOX activity was also diet-dependent and gluconate, the product of GOX activity, was detected in the frass. Unexpectedly, GOX activity was strongly and positively correlated with dietary protein content.  相似文献   

7.
8.
The salivary glands of ixodid ticks are central to tick feeding and to survival during off-host periods. They produce and secrete a number of molecules critical to maintaining the complex host-vector interface and to maintaining osmotic balance. We have previously shown that a cyclic AMP-dependent protein kinase (cAPK) is involved in the mechanism of salivary gland secretion. We have now cloned cDNAs encoding three isoforms of the catalytic subunit (cAPK-C) of the cAPK from Amblyomma americanum, which are probably produced from alternative RNA processing of a single cAPK-C gene. The cDNAs contain unique N-termini of variable lengths that are linked to a common region containing the alpha A helix, catalytic core, and a C-terminal tail. The common region is highly similar to both insect and vertebrate cAPK-Cs. We have examined mRNA profiles in whole ticks and in isolated salivary glands throughout feeding and find that a single cAPK-C isoform is expressed in the salivary glands of both unfed and feeding females.  相似文献   

9.
The activity of invertase, glucose oxidase and amylase in the cephalic (post‐cerebral) and thoracic salivary glands is determined in Egyptian and Carniolan honeybees (Apis mellifera L). For this purpose, three ages of worker bees are selected for enzyme assays. The results show that the three target enzymes are detected in the two glands during the three worker ages, except invertase, which cannot be detected in the cephalic gland of newly emerged bees of both subspecies. In both glands, the secretion of invertase is highest, followed by amylase and then glucose oxidase. In Carniolan bees, invertase secretion of the cephalic and thoracic glands increases gradually with age. In Egyptian bees, invertase increases with age only in the cephalic gland, whereas, in the thoracic gland, the highest secretion activity is detected in 10–15‐day‐old bees. The highest amounts of glucose oxidase and amylase in the cephalic gland are detected in newly emerged individuals of both Egyptian and Carniolan bees. In the thoracic gland, however, the highest activity of both enzymes is recorded only in newly emerged Egyptian bees. The results are discussed in the light of bee management and biological aspects of the two subspecies.  相似文献   

10.
11.
The insect salivary enzyme glucose oxidase (GOX) can inhibit wound-inducible nicotine production in tobacco, Nicotiana tabacum. We examined whether salivary gland extracts of Helicoverpa zea lacking active GOX could still suppress nicotine in tobacco, Nicotiana tabacum, and whether GOX could suppress wound-inducible defenses of another Solanaceous plant, tomato Lycopersicon esculentum. Tobacco leaves were wounded with a cork borer and treated with water, salivary gland extracts with active GOX (SxG), or salivary gland extracts with inactive GOX (SxI). After three days, leaves treated with SxG had significantly less nicotine than all other wounded treatments. Neonates that fed on the terminal leaves of tobacco plants treated with SxG had significantly higher survival than neonates that fed on leaves treated with either SxI or water. This evidence supports the assertion that GOX is the salivary factor responsible for the suppression of tobacco plant nicotine production by H. zea saliva. Results for the NahG tobacco plants, which lack salicylic acid (SA) due to a transgene for bacterial SA hydroxylase, indicate that suppression of nicotine by GOX does not require SA. However, tobacco leaves that were wounded and treated with SxG had significantly higher levels of the SA-mediated PR-1a protein than leaves treated with SxI or water. Leaves of tomato plants wounded with scissors and then treated with SxG had trypsin inhibitor levels that were moderately lower than plants wounded and treated with purified GOX, water, or SxI. However, all the wounded tomato leaves irrespective of treatment resulted in lower caterpillar growth rates than the non-wounded tomato leaves. Glucose oxidase is the first insect salivary enzyme shown to suppress wound-inducible herbivore defenses of plants.  相似文献   

12.
The toxicity of activated oxygen species towards adult Haemonchus contortus nematodes was examined in in vitro assays using ingestion of [3H]inulin to assess nematode viability. Both glucose/glucose oxidase (generation of hydrogen peroxide) and xanthine/xanthine oxidase (generation of superoxide anion) systems showed concentration-dependant toxicity to the nematodes. Both adult and larval Haemonchus contortus enzyme preparations showed significant catalase activities. Adult nematodes exposed to aminotriazole for 24 h showed catalase activities reduced to less than 20% of controls. Aminotriazole-treated nematodes exposed to a glucose/glucose oxidase system were significantly more susceptible to the toxic effects of the oxidant-generating system than controls (no aminotriazole pre-treatment). The concentration of glucose oxidase required to inhibit feeding by 50% was decreased 33-fold in aminotriazole-treated nematodes compared with controls. The effect of aminotriazole pre-treatment implicates hydrogen peroxide as a significant toxic agent in the glucose/glucose oxidase system. It is apparent that inhibition of Haemonchus contortus catalase increases the susceptibility of the parasite to the toxic effects of hydrogen peroxide, demonstrating a protective role for this enzyme. This suggests that catalase has the potential to play a significant role in the defence of this parasite against hydrogen peroxide produced as part of the respiratory burst of activated phagocytes within the host during its response to nematode infection.  相似文献   

13.
The NOX/DUOX family of NADPH oxidases are transmembrane proteins generating reactive oxygen species as their primary enzymatic products. NADPH oxidase (NOX) 1–5 and Dual oxidase (DUOX) 1 and 2 are members of this family. These enzymes have several biological functions including immune defense, hormone biosynthesis, fertilization, cell proliferation and differentiation, extracellular matrix formation and vascular regulation. They are found in a variety of tissues such as the airways, salivary glands, colon, thyroid gland and lymphoid organs. The discovery of NADPH oxidases has drastically transformed our view of the biology of reactive oxygen species and oxidative stress. Roles of several isoforms including DUOX1 and DUOX2 in host innate immune defense have been implicated and are still being uncovered. DUOX enzymes highly expressed in the respiratory and salivary gland epithelium have been proposed as the major sources of hydrogen peroxide supporting mucosal oxidative antimicrobial defenses. In this review, we shortly present data on DUOX discovery, structure and function, and provide a detailed, up-to-date summary of discoveries regarding antibacterial, antiviral, antifungal, and antiparasitic functions of DUOX enzymes. We also present all the literature describing the immune functions of lactoperoxidase, an enzyme working in partnership with DUOX to produce antimicrobial substances.  相似文献   

14.
The sphingid moth, Manduca sexta, typically passes through five larval instars, a pupal, and an adult stage. The larval labial glands secrete silk in the first instar and a viscous lubricant in the fifth. During metamorphosis the glands develop into salivary organs which produce an invertase-rich secretion. In normal development, the uniform population of cells in the duct of the larval gland transforms into the four sequentially arranged regions of secretory and conductive cells of the adult gland. In order to determine when competence to form the adult gland is established, fragments of labial gland ducts from first through fifth instar larvae were implanted into pupae. These gland fragments underwent metamorphosis with their hosts, passing through the same developmental phases. Glands from as early as the first instar were competent to form histologically and functionally normal adult regions. In later instars, transplants of measured fragments demonstrated that larval cells were programmed in situ to develop into the four adult cell types.  相似文献   

15.
Exocrine glands of blood‐feeding parasitic copepods are believed to be important in host immune response modulation and inhibition of host blood coagulation, but also in the production of substances for integument lubrication and antifouling. In this study, we aimed to characterize the distribution of different types of salmon louse (Lepeophtheirus salmonis) exocrine glands and their site of secretion. The developmental appearance of each gland type was mapped and genes specifically expressed by glands were identified. Three types of tegumental (teg 1–3) glands and one labial gland type were found. The first glands to appear during development were teg 1 and teg 2 glands. They have ducts extending both dorsally and ventrally suggested to be important in lubricating the integument. Teg 1 glands were found to express two astacin metallopeptidases and a gene with fibronectin II domains, while teg 2 glands express a heme peroxidase. The labial glands were first identified in planktonic copepodids, with reservoirs that allows for storage of glandular products. The last gland type to appear during development was named teg 3 and was not seen before the preadult I stage when the lice become more virulent. Teg 3 glands have ducts ending ventrally at the host‐parasite contact area, and may secrete substances important for the salmon lice virulence. Salmon lice teg 3 and labial glands are thus likely to be especially important in the host‐parasite interaction. Proteins secreted from the salmon louse glands to its salmonid host skin or blood represents a potential interface where the host immune system can meet and elicit effective responses to sea lice antigens. The present study thus represents a fundamental basis for further functional studies and identification of possible vaccine candidates. J. Morphol. 277:1616–1630, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Ma  Na  Zhang  Yu-Xin  Yue  Chao 《Protoplasma》2021,258(1):59-69

The salivary glands of Panorpidae usually exhibit distinct sexual dimorphism and are closely related to the nuptial feeding behavior. In this study, the salivary glands of Neopanorpa longiprocessa were investigated using light microscopy and transmission electron microscopy. The salivary glands are tubular labial glands and consist of a scoop-shaped salivary pump, a common salivary duct, and a pair of salivary tubes. The male and female salivary glands are remarkably different in the bifurcation position of the common salivary duct and the length and shape of the secretory tubes. Compared with the simple female salivary glands, the male’s are more developed as their paired elongated salivary tubes can be divided into two parts, the glabrate anterior tube and the posterior tube with many secretory tubules. The ultrastructural study shows that the male salivary tubes have strong secretory function. The existence of different secretion granules indicates that there are some chemical reactions or mixing occurring in the lumen. Based on the ultrastructural characteristics, the functions of the different regions of the salivary tube have been speculated. The relationship between the salivary glands and nuptial feeding behavior of N. longiprocessa has been briefly discussed based on the structure of the salivary glands.

  相似文献   

17.
18.
ABSTRACT. Phratora vitellinae L. and Chrysomela tremulae F. (Chrysomelinae, Coleoptera) feed on Salix or Populus spp. (Salicaceae). Their larvae, as well as the larvae of other chrysomelines feeding on Salicaceae, secrete salicylaldehyde. In this study, we demonstrate that salicylaldehyde is derived from salicin, a phenylglucoside present in the leaves of the host plant. The concentration of salicylaldehyde in the secretion is positively correlated with the amount of salicin in the food of the larvae. The transformation of salicin into salicylaldehyde occurs in the defence glands since the β-glucosidase activity is 4 times higher in their glands than in the gut. The larvae recover most of the glucose that results from the hydrolysis of salicin. For generalist predators, such as ants, salicylaldehyde is a more potent deterrent than saligenin or salicin.  相似文献   

19.
Conjugates of antibody with glucose oxidase obtained via the carbohydrate moiety of the enzyme via oxidation with periodate are suggested as a tool for selective killing of the target cell. The conjugate was separated from uncoupled enzyme by repeated precipitation with ammonium sulfate (42% saturation). Purity of the conjugate was estimated by gel filtration on Toya Pearl TP-65. The glucose oxidase conjugated with rabbit antibody against mouse IgG bound specifically to plastic-adsorbed mouse immunoglobulins and to cultured human endothelial cells pretreated with mouse anti-endothelial antiserum. Glucose oxidase targeted to the cells generates hydrogen peroxide in the presence of glucose. This hydrogen peroxide killed the endothelial cells even in the absence of a halide-peroxidase system and in the presence of catalase. Features of the conjugate (specificity, effective cytotoxicity, high stability) make it suitable for prospective in vivo application and for immunoselective segregation of heterogeneous cell populations.  相似文献   

20.
Both oxidants and antioxidants have been shown to modulate cell proliferation. We studied the effects of hydrogen peroxide and two antioxidants on the rate of proliferation of lens epithelial cells in culture. Hydrogen peroxide at concentrations higher than 32 microM caused a significant inhibition of proliferation. However, in the concentration range of 0.01-0.5 microM, hydrogen peroxide stimulated the rate of proliferation. The effect of hydrogen peroxide was dependent on the amount of cells in an individual culture well, indicating decomposition of hydrogen peroxide by cellular enzymes. In order to eliminate the possibility of decomposition of the dose of hydrogen peroxide given as a bolus, we induced continual production of hydrogen peroxide by adding glucose oxidase to the incubation medium. We found that hydrogen peroxide, generated by 1-50 microU x ml(-1) of glucose oxidase significantly increased the rate of cell proliferation. This effect was most apparent at the beginning of the exponential phase of cellular growth. Glucose oxidase alone (100-500 microU x ml(-1)) did not produce any effect. The effects of pro-oxidative hydrogen peroxide were compared with the effects of two biologically important antioxidants, alpha-tocopherol and retinol. Both antioxidants completely inhibited proliferation at concentrations of 30 microM and higher. In contrast to retinol, the effect of alpha-tocopherol was dependent on the amount of cells, indicating cellular decomposition of alpha-tocopherol. The results document the possibility of redox regulation of cellular proliferation at physiologically relevant reactant concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号