首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we demonstrated that Valpha14+ NKT cells and IFN-gamma are important upstream components in neutrophil-mediated host defense against infection with Streptococcus pneumoniae. In the present study, we extended these findings by elucidating the role of IFN-gamma in this Valpha14+ NKT cell-promoted process. Administration of recombinant IFN-gamma to Jalpha18KO mice prolonged the shortened survival, promoted the attenuated clearance of bacteria and improved the reduced accumulation of neutrophils and synthesis of MIP-2 and TNF-alpha in the lungs, in comparison to wild-type (WT) mice. In addition, intravenous transfer of liver mononuclear cells (LMNC) from WT mice into Jalpha18KO mice resulted in complete recovery of the depleted responses listed above, whereas such effects were not detected when LMNC were obtained from IFN-gammaKO or Jalpha18KO mice. Activation of Valpha14+ NKT cells by alpha-galactosylceramide (alpha-GalCer) significantly enhanced the clearance of bacteria, accumulation of neutrophils and synthesis of MIP-2 and TNF-alpha in the infected lungs; this effect was significantly inhibited by a neutralizing anti-IFN-gamma antibody. Finally, in a flow cytometric analysis, TNF-alpha synthesis was detected largely by CD11b(bright+) cells in the infected lungs. Our results demonstrated that IFN-gamma plays an important role in the neutrophil-mediated host protective responses against pneumococcal infection promoted by Valpha14+ NKT cells.  相似文献   

2.
The present study was designed to elucidate the role of Vgamma4(+) gammadelta T cells, a major subset of pulmonary gammadelta T cells, in host defense against infection with Streptococcus pneumoniae. The proportion and number of whole gammadelta T cells, identified as CD3(+) and TCR-delta(+) cells, and Vgamma4(+) gammadelta T cells, identified as CD3(+) and TCR-Vgamma4(+) cells, increased in the lungs at 3, 6 and 12h post-infection. Survival of infected mice and lung bacterial clearance were severely impaired in TCR-Vgamma4(-/-) mice compared with control wild-type (WT) mice. The impaired host protection in TCR-Vgamma4(-/-) mice correlated well with attenuated recruitment of neutrophils in lungs. MIP-2 and TNF-alpha synthesis in the infected tissues was significantly reduced in TCR-Vgamma4(-/-) mice compared with WT mice. Similar results were noted in the synthesis of TNF-alpha, but not clearly of MIP-2, by lung leukocytes stimulated with live bacteria. Our results demonstrate that Vgamma4(+) gammadelta T cells play an important role in the neutrophil-mediated host defense against S. pneumoniae infection by promoting the synthesis of TNF-alpha and possibly of MIP-2 in the lungs.  相似文献   

3.
ABSTRACT. We examined the effects of surfactant protein A (SP-A), a collectin, on the interaction of Pneumocystis murina with its host at the beginning, early to middle, and late stages of infection. Pneumocystis murina from SP-A wild-type (WT) mice inoculated intractracheally into WT mice (WTS-WTR) adhered well to alveolar macrophages, whereas organisms from SP-A knockout (KO) mice inoculated into KO mice (KOS-KOR) did not. Substitution of WT mice as the source of organisms (WTS-KOR) or recipient host macrophages (KOS-WTR) restored adherence to that found with WTS-WTR mice. In contrast, when immunosuppressed KO and WT mice were inoculated with P. murina from a homologous source (KOS-KOR, WTS-WTR) or heterologous source (WTS-KOR, KOS-WTR) and followed sequentially, WTS-KOR mice had the highest levels of infection at weeks 3 and 4; these mice also had the highest levels of the chemokine macrophage inflammatory protein-2 and neutrophils in lavage fluid at week 3. Surfactant protein-A administered to immunosuppressed KOS-KOR mice with Pneumocystis pneumonia for 8 wk as a therapeutic agent failed to lower the organism burden. We conclude that SP-A can correct the host immune defect in the beginning of P. murina infection, but not in the middle or late stages of the infection.  相似文献   

4.
CD1d-restricted NKT cells are reported to play a critical role in the host defense to pulmonary infection with Pseudomonas aeruginosa. However, the contribution of a major subset expressing a Valpha14-Jalpha18 gene segment remains unclear. In the present study, we re-evaluated the role of NKT cells in the neutrophilic inflammatory responses and host defense to this infection using mice genetically lacking Jalpha18 or CD1d (Jalpha18KO or CD1dKO mice). These mice cleared the bacteria in lungs at a comparable level to wild-type (WT) mice. There was no significant difference in the local neutrophilic responses, as shown by neutrophil counts and synthesis of MIP-2 and TNF-alpha, in either KO mice from those in WT mice. Administration of alpha-galactosylceramide, a specific activator of Valpha14+ NKT cells, failed to promote the bacterial clearance and neutrophilic responses, although the same treatment increased the synthesis of IFN-gamma, suggesting the involvement of this cytokine downstream of NKT cells. In agreement against this notion, these responses were not further enhanced by administration of recombinant IFN-gamma in the infected Jalpha18KO mice. Our data indicate that NKT cells play a limited role in the development of neutrophilic inflammatory responses and host defense to pulmonary infection with P. aeruginosa.  相似文献   

5.
Mycobacterial infection in MyD88-deficient mice   总被引:7,自引:0,他引:7  
MyD88 is an adaptor protein that plays a major role in TLR/IL-1 receptor family signaling. To understand the role of MyD88 in the development of murine tuberculosis in vivo, MyD88 knockout (KO) mice aerially were infected with Mycobacterium tuberculosis. Infected MyD88 mice were not highly susceptible to M. tuberculosis infection, but they developed granulomatous pulmonary lesions with neutrophil infiltration which were larger than those in wild-type (WT) mice (P < 0.01). The pulmonary tissue levels of mRNA for iNOS and IL-18 were slightly lower, but levels of mRNA for IL-1 beta, IL-2, IL-4, IL-6, IL-10, IFN-gamma, and TGF-beta were higher in MyD88 KO mice. IFN-gamma, TNF-alpha, IL-1 beta, and IL-12 also were high in the sera of MyD88 KO mice. There were no statistically significant differences in the expression of TNF-alpha, IL-12, and ICAM-1 mRNA between MyD88 KO and WT mice. Thus, MyD88 deficiency did not influence the development of murine tuberculosis. NF-kappa B activity was similar in the alveolar macrophages from the lung tissues of MyD88 KO and WT mice. Also, there may be a TLR2-specific, MyD88-independent IL-1 receptor/TLR-mediated pathway to activate NF-kappa B in the host defense against mycobacterial infection.  相似文献   

6.
Interleukin (IL)-12 is a critical cytokine in the T helper (Th)1 response and host defense against intracellular microorganisms, while its role in host resistance to extracellular bacteria remains elusive. In the present study, we elucidated the role of IL-12 in the early-phase host defense against acute pulmonary infection with Streptococcus pneumoniae, a typical extracellular bacterium, using IL-12p40 gene-disrupted (IL-12p40KO) mice. IL-12p40KO mice were highly susceptible to S. pneumoniae infection, as indicated by the shortened survival time, which was completely restored by the replacement therapy with recombinant (r) IL-12, and increased bacterial counts in the lung. In these mice, recruitment of neutrophils in the lung was significantly attenuated when compared to that in wild-type (WT) mice, which correlated well with the reduced production of macrophage inflammatory protein (MIP-2) and tumor necrosis factor (TNF)-alpha in the infected tissues at the early phase of infection. In vitro synthesis of both cytokines by S. pneumoniae-stimulated lung leukocytes was significantly lower in IL-12p40KO mice than in WT mice, and addition of rIL-12 or interferon (IFN)-gamma restored the reduced production of MIP-2 and TNF-alpha in IL-12p40KO mice. Neutralizing anti-IFN-gamma monoclonal antibody (mAb) significantly decreased the effect of rIL-12. Anti-IFN-gamma mAb shortened the survival time of infected mice and reduced the recruitment of neutrophils and production of MIP-2 and TNF-alpha in the lungs. Our results indicated that IL-12p40 plays a critical role in the early-phase host defense against S. pneumoniae infection by promoting the recruitment of neutrophils to the infected tissues.  相似文献   

7.
The present study was conducted to critically determine the protective role of IL-18 in host response to Mycobacterium tuberculosis infection. IL-18-deficient (knockout (KO)) mice were slightly more prone to this infection than wild-type (WT) mice. Sensitivity of IL-12p40KO mice was lower than that of IL-12p40/IL-18 double KO mice. IFN-gamma production caused by the infection was significantly attenuated in IL-18KO mice compared with WT mice, as indicated by reduction in the levels of this cytokine in sera, spleen, lung, and liver, and its synthesis by spleen cells restimulated with purified protein derivatives. Serum IL-12p40 level postinfection and its production by peritoneal exudate cells stimulated with live bacilli were also significantly lower in IL-18KO mice than WT mice, suggesting that attenuated production of IFN-gamma was secondary to reduction of IL-12 synthesis. However, this was not likely the case, because administration of excess IL-12 did not restore the reduced IFN-gamma production in IL-18KO mice. In further studies, IL-18 transgenic mice were more resistant to the infection than control littermate mice, and serum IFN-gamma level and its production by restimulated spleen cells were increased in the former mice. Taken together, our results indicate that IL-18 plays an important role in Th1 response and host defense against M. tuberculosis infection although the contribution was not as profound as that of IL-12p40.  相似文献   

8.
Pseudomonas aeruginosa keratitis destroys the cornea in susceptible (B6), but not resistant (BALB/c) mice. To determine mechanisms mediating resistance, the role of IFN-gamma, IL-12, and IL-18 was tested in BALB/c mice. RT-PCR analysis detected IFN-gamma mRNA expression levels in cornea that were significantly increased at 1-7 days postinfection. IL-18 mRNA was detected constitutively in cornea and, at 1-7 days postinfection, levels were elevated significantly, while no IL-12 mRNA was similarly detected. To test whether IL-18 contributed to IFN-gamma production, mice were treated with anti-IL-18 mAb. Treatment decreased corneal IFN-gamma mRNA levels, and bacterial load and disease increased/worsened, compared with IgG-treated mice. To stringently examine the role of IFN-gamma in bacterial killing, knockout (-/-) vs wild-type (wt) mice also were tested. All corneas perforated, and bacterial load was increased significantly in -/- vs wt mice. Because disease severity was increased in IFN-gamma(-/-) vs IL-18-neutralized mice, and since IL-18 also induces production of TNF, we tested for TNF-alpha in both groups. ELISA analysis demonstrated significantly elevated corneal TNF-alpha protein levels in IFN-gamma(-/-) vs wt mice after infection. In contrast, RT-PCR analysis of IL-18-neutralized vs IgG-treated infected mice revealed decreased corneal TNF-alpha mRNA expression. Next, to resolve whether TNF was required for bacterial killing, TNF-alpha was neutralized in BALB/c mice. No difference in corneal bacterial load was detected in neutralized vs IgG-treated mice. These data provide evidence that IL-18 contributes to the resistance response by induction of IFN-gamma and that IFN-gamma is required for bacterial killing.  相似文献   

9.
10.
Regulation of infection with Histoplasma capsulatum by TNFR1 and -2   总被引:2,自引:0,他引:2  
The concerted action of several cytokines is necessary for resolution of both primary and secondary infection with Histoplasma capsulatum. Among the soluble factors that contribute to tissue sterilization, TNF-alpha stands as a central mediator of protective immunity to this fungus. In this study, we explored the regulation of protective immunity by TNFR1 and -2. In primary pulmonary infection, both TNFR1-/- and -2-/- mice manifested a high mortality after infection with H. capsulatum, although TNFR1-/- mice were more susceptible than TNFR2 -/- mice. Overwhelming infection in the former was associated with a pronounced decrement in the number of inflammatory cells in the lungs and elevated IFN-gamma and TNF-alpha levels in the lungs. In contrast, IFN-gamma levels were markedly decreased in TNFR2-/- mice, and treatment with this cytokine restored protective immunity. Lung macrophages from both groups of knockout mice released substantial amounts of NO. Upon secondary infection, TNFR2-/- mice survived rechallenge and cleared infection as efficiently as C57BL/6 animals. In contrast, mice given mAb to TNFR1 succumbed to reexposure, and the high mortality was accompanied by a significant increase in fungal burden in the lungs. Both IL-4 and IL-10 were elevated in the lungs of these mice. The results demonstrate the pivotal influence of TNFR1 and -2 in controlling primary infection and highlight the differences between these receptors for regulation reexposure histoplasmosis.  相似文献   

11.
ABSTRACT: BACKGROUND: Male wild type (WT) C57BL/6 mice are less capable of clearing bacteria and surviving from bacterial pneumonia than females. However, if an oxidative stress (acute ozone exposure) occurs before infection, the advantage shifts to males who then survive at higher rates than females. We have previously demonstrated that survival in surfactant protein-A (SP-A) knockout (KO) mice compared to WT was significantly reduced. Because the alveolar macrophage (AM) is pivotal in host defense we hypothesized that SP-A and circulating sex hormones are responsible for these sex differences. We used 2-D DIGE to examine the relationship of sex and SP-A on the AM proteome. The role of SP-A was investigated by treating SP-A KO mice with exogenous SP-A for 6 and 18 hr and studying its effects on the AM proteome. RESULTS: We found: 1) less variance between KO males and females than between the WT counterparts by principal component analysis, indicating that SP-A plays a role in sex differences; 2) fewer changes in females when the total numbers of significantly changing protein spots or identified whole proteins in WT or 18 hr SP-A-treated males or females were compared to their respective KO groups; 3) more proteins with functions related to chaperones or protease balance and Nrf2-regulated proteins changed in response to SP-A in females than in males; and 4) the overall pattern of SP-A induced changes in actin-related proteins were similar in both sexes, although males had more significant changes. CONCLUSIONS: Although there seems to be an interaction between sex and the effect of SP-A, it is unclear what the responsible mechanisms are. However, we found that several of the proteins that were expressed at significantly higher levels in females than in males in WT and/or in KO mice are known to interact with the estrogen receptor and may thus play a role in the SP-A/sex interaction. These include major vault protein, chaperonin subunit 2 (beta) (CCT2), and Rho GDP alpha dissociation inhibitor. We conclude that sex differences exist in the proteome of AM derived from male and female mice and that SP-A contributes to these sex differences.  相似文献   

12.
In this study, we investigated the role of endogenous IL-12 in protective immunity against blood-stage P. chabaudi AS malaria using IL-12 p40 gene knockout (KO) and wild-type (WT) C57BL/6 mice. Following infection, KO mice developed significantly higher levels of primary parasitemia than WT mice and were unable to rapidly resolve primary infection and control challenge infection. Infected KO mice had severely impaired IFN-gamma production in vivo and in vitro by NK cells and splenocytes compared with WT mice. Production of TNF-alpha and IL-4 was not compromised in infected KO mice. KO mice produced significantly lower levels of Th1-dependent IgG2a and IgG3 but a higher level of Th2-dependent IgG1 than WT mice during primary and challenge infections. Treatment of KO mice with murine rIL-12 during the early stage of primary infection corrected the altered IgG2a, IgG3, and IgG1 responses and restored the ability to rapidly resolve primary and control challenge infections. Transfer of immune serum from WT mice to P. chabaudi AS-infected susceptible A/J mice completely protected the recipients, whereas immune serum from KO mice did not, as evidenced by high levels of parasitemia and 100% mortality in recipient mice. Furthermore, depletion of IgG2a from WT immune serum significantly reduced the protective effect of the serum while IgG1 depletion had no significant effect. Taken together, these results demonstrate the protective role of a Th1-immune response during both acute and chronic phases of blood-stage malaria and extend the immunoregulatory role of IL-12 to Ab-mediated immunity against Plasmodium parasites.  相似文献   

13.
To further determine the role of surfactant protein (SP)-D in the pathogenesis of Pneumocystis pneumonia, a mouse model of transgenic overexpression (OE) of SP-D was studied. These animals produce roughly 30- to 50-fold greater SP-D than their wild-type (WT) counterparts but show no other differences in lung morphology and function. Animals in both the SP-D OE and WT groups were depleted of CD4 lymphocytes with weekly injections of GK1.5 antibody, before Pneumocystis inoculation, and throughout the subsequent infection period. At various time points, mice were killed and analyzed for inflammatory parameters and organism burden. Proinflammatory cytokines in bronchoalveolar lavage fluid were elevated throughout the period of infection, with OE animals exhibiting significantly higher levels of TNF-alpha and macrophage inflammatory protein-2 compared with WT controls. The total number of cells in the lavage fluid was also increased significantly only in the OE group, whereas the cell differential composition demonstrated lymphocyte and eosinophil infiltration in both groups of animals. Significantly, the organism burden was markedly higher in the SP-D OE animals, whereas the WT mice demonstrated little alteration in organism number over the course of infection. These results further indicate that SP-D facilitates the development of Pneumocystis infection and related lung inflammation in an immunosuppressed mouse model.  相似文献   

14.
15.
In order to understand the role of IRF-1 in the development of murine tuberculosis in vivo, IRF-1 knockout mice were infected with Mycobacterium tuberculosis by placing them in the exposure chamber of an airborne infection apparatus. These knockout mice developed multifocal necrotic lesions in the lung, liver and spleen tissues and died of disseminated tuberculosis within 43 days of infection. Compared with the levels in wild-type mice, the pulmonary inducible NO synthase (iNOS) mRNA expression level was significantly lower, but IL-18 and IL-6 mRNA levels were higher. There was no statistically significant difference in the expression of IFN-gamma and TNF-alpha mRNA between the IRF-1 knockout and wild-type mice. IRF-1 is indirectly responsible for iNOS mRNA expression and plays an important role in the pathogenesis of murine tuberculosis.  相似文献   

16.
Host responses to Pneumocystis carinii infection mediate impairment of pulmonary function and contribute to the pathogenesis of pneumonia. IL-10 is known to inhibit inflammation and reduce the severity of pathology caused by a number of infectious organisms. In the present studies, IL-10-deficient (IL-10 knockout (KO)) mice were infected with P. carinii to determine whether the severity of pathogenesis and the efficiency of clearance of the organisms could be altered in the absence of IL-10. The clearance kinetics of P. carinii from IL-10 KO mice was significantly enhanced compared with that of wild-type (WT) mice. This corresponded to a more intense CD4(+) and CD8(+) T cell response as well as an earlier neutrophil response in the lungs of IL-10 KO mice. Furthermore, IL-12, IL-18, and IFN-gamma were found in the bronchoalveolar lavage fluids at earlier time points in IL-10 KO mice suggesting that alveolar macrophages were activated earlier than in WT mice. However, when CD4(+) cells were depleted from P. carinii-infected IL-10 KO mice, the ability to enhance clearance was lost. Furthermore, CD4-depleted IL-10 KO mice had significantly more lung injury than CD4-depleted WT mice even though the intensity of the inflammatory responses was similar. This was characterized by increased vascular leakage, decreased oxygenation, and decreased arterial pH. These data indicate that IL-10 down-regulates the immune response to P. carinii in WT mice; however, in the absence of CD4(+) T cells, IL-10 plays a critical role in controlling lung damage independent of modulating the inflammatory response.  相似文献   

17.
Murine gammaherpesvirus 68 (MHV-68) when administered intranasally induces high levels of gamma interferon (IFN-gamma) in the lymphoid tissues of infected mice. In order to investigate the role of this cytokine in the immune response to MHV-68, mice which were congenitally deficient in the IFN-gamma gene (IFN-gamma knockout mice) were infected with the virus. Comparison of the courses of the disease in wild-type control and IFN-gamma knockout mice revealed surprisingly little difference. Both groups of mice had cleared infectious virus from the lungs 15 days after infection, although there did appear to be a slight delay in viral clearance in the IFN-gamma knockout mice. In addition, after the initial phase of viral clearance, the lungs of both groups remained clear of replicating virus throughout the course of the experiment, which concluded 34 days after infection. Consistent with these observations, cytotoxic T-cell activities were similar in the two groups of mice. Levels of latent virus were comparable in wild-type and knockout mice over the time course studied. Furthermore, analysis of the numbers, types, and activation status of cells in the lungs, lymph nodes, and spleens of control and knockout mice revealed no striking difference. This suggests that IFN-gamma is not essential for regulating the cell recruitment or proliferation that normally occurs during this viral infection. Apart from the expected lack of IFN-gamma, cytokine profiles were not dramatically altered in IFN-gamma knockout mice, demonstrating that IFN-gamma did not suppress the proliferation or differentiation of Th2 cells during MHV-68 infection. These observations indicate that IFN-gamma plays a nonessential or redundant role in the control of acute infection with MHV-68.  相似文献   

18.
IL-4 is required for defense against mycobacterial infection   总被引:9,自引:0,他引:9  
Although the involvement of T helper (Th1) cells is central to protection against intracellular bacteria, including Mycobacterium tuberculosis, the involvement of Th2 cells, characterized by potent interleukin (IL)-4 secretion in mycobacterial infection is still unclear. In order to clarify the role of IL-4 in murine tuberculosis, IL-4-deficient mutant mice, IL-4 knockout (IL-4 KO) mice, were utilized. The mice were infected with H37Rv, Kurono or BCG Pasteur via an airborne infection route by placing them in the exposure chamber of a Middlebrook airborne infection apparatus. Their capacity to control mycobacterial growth, granuloma formation, cytokine secretion, and nitric oxide (NO) production were examined. These mice developed large granulomas, but not necrotic lesions in the lungs, liver or spleen (P<0.05). This was consistent with a significant increase in lung colony-forming units (CFU). Compared with levels in wild-type mice, upon stimulation with mycobacteria, splenic IL-10 levels were low and IL-6 levels were intermediate, but interferon (IFN)-gamma and IL-12 levels were significantly higher. IL-18 levels were within the normal range. The level of NO production by alveolar macrophages of the IL-4 KO mice was similar to that of the wild-type mice. Granulomatous lesion development by IL-4 KO mice was inhibited significantly by treatment with exogenous recombinant IL-4. These findings were not specific to the IL-4 KO mice used. Our data show that IL-4 may play a protective role in defense against mycobacteria, although IFN-gamma and TNF-alpha play major roles in it. Our data do not rule out an IFN-gamma-independent function of IL-4 in controlling tuberculosis.  相似文献   

19.
Hyperoxic lung injury, believed to be mediated by reactive oxygen species, inflammatory cell activation, and release of cytotoxic cytokines, complicates the care of many critically ill patients. The cytokine tumor necrosis factor (TNF)-alpha is induced in lungs exposed to high concentrations of oxygen; however, its contribution to hyperoxia-induced lung injury remains unclear. Both TNF-alpha treatment and blockade with anti-TNF antibodies increased survival in mice exposed to hyperoxia. In the current study, to determine if pulmonary oxygen toxicity is dependent on either of the TNF receptors, type I (TNFR-I) or type II (TNFR-II), TNFR-I or TNFR-II gene-ablated [(-/-)] mice and wild-type control mice (WT; C57BL/6) were studied in >95% oxygen. There was no difference in average length of survival, although early survival was better for TNFR-I(-/-) mice than for either TNFR-II(-/-) or WT mice. At 48 h of hyperoxia, slightly more alveolar septal thickening and peribronchiolar and periarteriolar edema were detected in WT than in TNFR-I(-/-) lungs. By 84 h of oxygen exposure, TNFR-I(-/-) mice demonstrated greater alveolar debris, inflammation, and edema than WT mice. TNFR-I was necessary for induction of cytokine interleukin (IL)-1beta, IL-1 receptor antagonist, chemokine macrophage inflammatory protein (MIP)-1beta, MIP-2, interferon-gamma-induced protein-10 (IP-10), and monocyte chemoattractant protein (MCP)-1 mRNA in response to intratracheal administration of recombinant murine TNF-alpha. However, IL-1beta, IL-6, macrophage migration inhibitory factor, MIP-1alpha, MIP-2, and MCP-1 mRNAs were comparably induced by hyperoxia in TNFR-I(-/-) and WT lungs. In contrast, mRNA for manganese superoxide dismutase and intercellular adhesion molecule-1 were induced by hyperoxia only in WT mice. Differences in early survival and toxicity suggest that pulmonary oxygen toxicity is in part mediated by TNFR-I. However, induction of specific cytokine and chemokine mRNA and lethality in response to severe hyperoxia was independent of TNFR-I expression. The current study supports the prediction that therapeutic efforts to block TNF-alpha receptor function will not protect against pulmonary oxygen toxicity.  相似文献   

20.
We investigated the effect of Toll-like receptor 4 (TLR4) on the progression of murine Pneumocystis pneumonia. TLR4-mutant C3H/HeJ and wild-type C3H/HeN mice were infected with Pneumocystis after depletion of CD4 T cells. Mutant mice lost body weight more quickly and showed exacerbated pulmonary injury even though there was no difference in Pneumocystis organism burden in the lung. Mutant mice showed reduced levels of IL-10, IL-12p40 and MIP-2 accompanied by elevated levels of TNF-alpha and IL-6 in the bronchoalveolar lavage fluid compared with those of wild-type mice 8 weeks after the infection. In response to stimulation with Pneumocystis antigen, the production of IL-10, IL-12p40 and MIP-2 by alveolar macrophages was partially impaired in mutant mice, while that in wild-type mice was suppressed by the anti-TLR4/MD-2 mAb, MTS510. Unlike the response to lipopolysaccharide stimulation, TLR4-reconstituted HEK293 cells showed no elevated NF-kappaB activation after stimulation with Pneumocystis antigen. Taken together, these findings suggest that recognition of Pneumocystis by TLR4 helps to regulate the host inflammatory responses through cytokine and chemokine production by alveolar macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号