首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Esp-independent biofilm formation by Enterococcus faecalis   总被引:12,自引:0,他引:12       下载免费PDF全文
Enterococcus faecalis is a gram-positive opportunistic pathogen known to form biofilms in vitro. In addition, this organism is often isolated from biofilms on the surfaces of various indwelling medical devices. However, the molecular mechanisms regulating biofilm formation in these clinical isolates are largely unknown. Recent work has suggested that a specific cell surface protein (Esp) of E. faecalis is critical for biofilm formation by this organism. However, in the same study, esp-deficient strains of E. faecalis were found to be capable of biofilm formation. To test the hypothesis that Esp is dispensable for biofilm formation by E. faecalis, we used microtiter plate assays and a chemostat-based biofilm fermentor assay to examine biofilm formation by genetically well-defined, non-Esp-expressing strains. Our results demonstrate that in vitro biofilm formation occurs, not only in the absence of esp, but also in the absence of the entire pathogenicity island that harbors the esp coding sequence. Using scanning electron microscopy to evaluate biofilms of E. faecalis OG1RF grown in the fermentor system, biofilm development was observed to progress through multiple stages, including attachment of individual cells to the substratum, microcolony formation, and maturation into complex multilayered structures apparently containing water channels. Microtiter plate biofilm analyses indicated that biofilm formation or maintenance was modulated by environmental conditions. Furthermore, our results demonstrate that expression of a secreted metalloprotease, GelE, enhances biofilm formation by E. faecalis. In summary, E. faecalis forms complex biofilms by a process that is sensitive to environmental conditions and does not require the Esp surface protein.  相似文献   

2.
Lipoteichoic acid is a major cell wall virulence factor of gram-positive bacteria. LTAs from various bacteria have differential immunostimulatory potentials due to heterogeneity in their structures. Although recent studies have demonstrated that LTA isolated from Lactobacillus plantarum (pLTA) has anti-inflammatory properties and is less inflammatory than LTAs from pathogenic bacteria, little is known about the structure of pLTA. In this study, high-field NMR spectra of the pLTA were compared with those of LTA from pathogenic bacterium, Staphylococcus aureus (aLTA). The 2D NMR results demonstrated that pLTA possesses α-linked hexose sugar substituents on the poly-glycerophosphate backbone instead of N-acetylglucosamine substituents, and unsaturated fatty acids in its glycolipids. The sugar substituents were revealed as an approximately 29:1 molar ratio of the glucose to galactose by HPAEC-PAD analysis. MALDI-TOF/TOF MS analyses identified the presence of unsaturated fatty acids in the glycolipid moieties of pLTA. In addition, the glycolipid structure was found to be composed of trihexosyl-diacyl- and/or trihexosyl-triacyl-glycerol ceramide units by means of unique fragment ions of the glycolipids. These results enabled us to elucidate the pLTA structure, which is distinctively different from canonical LTA structure, and suggest that the unique immunological property of pLTA might be caused by the pLTA structure.  相似文献   

3.
4.
目的就强酸性电解质水对粪肠球菌生物膜杀菌作用进行体外研究。方法粪肠球菌生物膜在体外培养24h,然后等量分为三组,分别采用去离子水、20mL/L氯已定、强酸性电解质水来进行处理,在处理后的3个时间点进行荧光染色处理,对各组生物膜中死菌、活菌的变化用激光共聚焦显微镜来予以观察。结果粪肠球菌生物膜在强酸性电解质水处理后5min,以死菌为主,叠加同一视野后呈橘红色;处理10min,15min后,基本均为死菌,叠加同一视野后呈红色。与去离子水处理以及20mL/L氯己定处理相比,强酸性电解质水处理各时间点的活菌数都要明显更低一些,存在着较为明显的差异,差异具有统计学意义(P0.05)。结论强酸性电解质水对粪肠球菌生物膜的杀菌作用较强,远远强于去离子水和20mL/L氯己定,值得推广。  相似文献   

5.
Strains of Enterococcus faecalis and Lactobacillus sake have been found to express lantibiotics with unusual properties. The enterococcal lantibiotic is unusual in that it consists of two dissimilar subunits, both putatively containing modifications consistent with those found in other lantibiotics. The enterococal lantibiotic is also unusual in the number of proteolytic steps involved in secretion signal removal and activation. Moreover, it has been observed to contribute to enterococcal disease in humans and in animal models. Structrural studies of lactocin S, expressed by a strain of L. sake highlight unique properties including the presence of D-alanine within its structure, and a protease putatively responsible for lactocin S secretion signal peptide removal which, itself, lacks a signal or propeptide sequence. Despite the unusual properties of each of these lantibiotics, the operons encoding each, and accompanying auxiliary functions, are collinear suggeting a common ancestry. The accretion of interdigitating DNA sequences between genes encoded within the lactocin S determinant are unique to that determinant, however, and are of unknown function.  相似文献   

6.
Aminophosphonic acids analogous to glutamic acid, aspartic acid, alanine, and valine were actively accumulated by Lactobacillus plantarum. Uptake was dependent on the availability of glucose and, in all cases, the estimated intracellular concentrations substantially exceeded extracellular levels. During uptake, there was little metabolism of tritiated 2-amino-3-phosphonopropionic acid (APP), the aspartic acid analogue, and a negligible incorporation of isotope from this substance into the nucleic acid, lipid, protein, or cell wall fractions of the cell. Competition studies with APP indicated that its transport in L. plantarum and in Streptococcus faecalis was antagonized only by structurally related compounds such as glutamic, aspartic, and cysteic acids. Kinetic studies showed that APP was taken up by a single catalytic system in S. faecalis. A mutant strain of this organism which lacks one of two kinetically distinguishable dicarboxylic amino acid transport systems failed to accumulate measurable amounts of APP. These experiments indicate that the aminophosphonic acids are accumulated by the amino acid transport systems in these bacteria with minimal metabolic changes.  相似文献   

7.
The release of lipoteichoic acid and mesosomal vesicles to the supernatant buffer during the formation of spherical, osmotically fragile bodies was studied using Streptococcus faecalis ATCC 9790. Autolytic N-acetylmuramidase action was permitted to take place in exponential-phase cells incubated in a buffer which provides an exceptional degree of osmotic stabilization. Both lipoteichoic acid and mesosomal vesicles were relatively rapidly released to the supernatant buffer. Most of the cellular content of lipoteichoic acid (and mesosomal vesicles) was found in the supernatant buffer at incubation times when the cells still retained over 75% of their cell wall. [14-C]- or [3-H]glycerol was used as a label for both cellular lipoteichoic acids and lipid-glycerol. Glycerol in lipoteichoic acid was quantitated after phenol-water and chloroform-methanol treatments and identified by products of acid hydrolysis and its ability to be precipitated by (i) antibodies specific for the polyglycerol-phosphate backbone, (ii) antibodies to the streptococcal group D antigen, and (iii) concanavalin A. Evidence was obtained that lipoteichoic acid was not associated with isolated mesosomal vesicles. Centrifugation of supernates at 200,000 X g sedimented membranous (mesosomal) vesicles and nearly all of the lipid-glycerol present, whereas essentially all of the lipoteichoic acid remained in the supernatant. The sedimented mesosomal vesicles differed from protoplast membrane in their higher lipid-phosphorus to protein ratio and in the absence of detectable levels of two enzymatic activities found in protoplast membranes, adenosine triphosphatase and polynucleotide phosphorylase. Both types of membranes were found to contain DD-carboxypeptidase and LD-transpeptidase activities at nearly the same specific activities. No evidence was obtained for the association of autolytic N-acetylmuramidase activity with either type of membrane preparation.  相似文献   

8.
Staphylococcus aureus is a common etiologic agent for Gram-positive sepsis, and its lipoteichoic acid (LTA) may be important in causing Gram-positive bacterial septic shock. Here, we demonstrate that highly purified LTA (pLTA) isolated from Lactobacillus plantarum inhibited aureus LTA (aLTA)-induced TNF-alpha production in THP- cells. Whereas pLTA scarcely induced TNF-alpha production, aLTA induced excessive TNF-alpha production. Interestingly, aLTA-induced TNF-alpha production was inhibited by pLTA pretreatment. Compared with pLTA, aLTA induced strong signal transduction through the MyD88, NF-kappaB, and MAP kinases. This signaling, however, was reduced by a pLTA pretreatment, and resulted in the inhibition of aLTA-induced TNF-alpha production. Whereas dealanylated LTAs, as well as native LTAs, contributed to TNF- induction or TNF-alpha reduction, deacylated LTAs did not, indicating that the acyl chain of LTA played an important role in the LTA-mediated immune regulation. These results suggest that pLTA may act as an antagonist for aLTA, and that an antagonistic pLTA may be a useful agent for suppressing the septic shock caused by Gram-positive bacteria.  相似文献   

9.
Lipoteichoic acid (LTA) from Staphylococcus aureus (aLTA) and from Lactobacillus plantarum LTA (pLTA) are both recognized by Toll-like receptor 2 (TLR2), but cause different stimulatory effects on the innate immune and inflammatory responses, and their underlying cellular mechanisms are unknown. In this study, comparative proteome analysis was performed using two-dimensional gel electrophoresis and mass spectrometry on protein extracts from human monocyte THP-1 cells stimulated with either aLTA or pLTA. Differentially expressed proteins might be involved in innate immunity and inflammation. Cells treated with aLTA and with pLTA showed different protein expression profiles. Of 60 identified proteins, 10 were present only in treated cells (8 in aLTA-treated only, and 2 in pLTA-treated only), 1 protein (IMPDH2) was suppressed by pLTA, and 49 were up- or down-regulated more than three-fold by aLTA- or pLTA- stimulation. Several proteins involved in immunity or inflammation, antioxidation, or RNA processing were significantly changed in expression by aLTA- or pLTA-stimulation, including cyclophilin A, HLA-B27, D-dopachrome tautomerase, Mn- SOD, hnRNP-C, PSF and KSRP. These data demonstrated that aLTA and pLTA had different effects on the protein profile of THP-1 cells. Comparison of the proteome alterations will provide candidate biomarkers for further investigation of the immunomodulatory effects of aLTA and pLTA, and the involvement of aLTA in the pathogenesis of Staphylococcus aureus sepsis.  相似文献   

10.
11.
Biofilm production is thought to be an important step in many enterococcal infections. In several Gram-positive bacteria, membrane glycolipids have been implicated in biofilm formation. We constructed a non-polar deletion mutant of a putative glucosyltransferase designated biofilm-associated glycolipid synthesis A ( bgsA ) in Enterococcus faecalis 12030. Analysis of major extracted glycolipids by nuclear magnetic resonance spectroscopy revealed that the cell membrane of 12030Δ bgsA was devoid of diglucosyl–diacylglycerol (DGlcDAG), while monoglucosyl–diacylglycerol was overrepresented. The cell walls of 12030Δ bgsA contained longer lipoteichoic acid molecules and were less hydrophobic than wild-type bacteria. Inactivation of bgsA in E. faecalis 12030 and E. faecalis V583 led to an almost complete arrest of biofilm formation on plastic surfaces. Overexpression of bgsA , on the other hand, resulted in increased biofilm production. While initial adherence was not affected, bgsA -deficient bacteria did not accumulate in the growing biofilm. Also, adherence of E. faecalis Δ bgsA to Caco-2 cells was impaired. In a mouse bacteraemia model, E. faecalis 12030Δ bgsA was cleared more rapidly from the bloodstream than the wild-type strain. In summary, BgsA is a glycosyltransferase synthetizing DGlcDAG, a glycolipid and lipoteichoic acid precursor involved in biofilm accumulation, adherence to host cells, and virulence in vivo .  相似文献   

12.
Enterococcus faecalis strain OG1RF and its (p)ppGpp-deficient ΔrelA, ΔrelQ, and ΔrelA ΔrelQ mutants were grown in biofilms and evaluated for growth profiles, biofilm morphology, cell viability, and proteolytic activity. E. faecalis lacking (p)ppGpp had a diminished capacity to sustain biofilm formation over an extended period of time and expressed abundant proteolytic activity.  相似文献   

13.
Oxalate-degrading Enterococcus faecalis   总被引:2,自引:0,他引:2  
An oxalate-degrading Enterococcus faecalis was isolated from human stools under anaerobic conditions. The bacteria required a poor nutritional environment and repeated subculturing to maintain their oxalate-degrading ability. The E. faecalis produced 3 proteins (65, 48, and 40 kDa) that were not produced by non-oxalate-degrading E. faecalis as examined by SDS-PAGE. Antibodies against oxalyl-coenzyme A decarboxylase (65 kDa) and formyl-coenzyme A transferase (48 kDa) obtained from Oxalobacter formigenes (an oxalate-degrading anaerobic bacterium in the human intestine) reacted with 2 of the proteins (65 and 48 kDa) from the E. faecalis as examined by Western blottings. This is the first report on the isolation of oxalate-degrading facultative anaerobic bacteria from humans.  相似文献   

14.
Bacterial growth as a biofilm on solid surfaces is strongly associated with the development of human infections. Biofilms on native heart valves (infective endocarditis) is a life-threatening disease as a consequence of bacterial resistance to antimicrobials in such a state. Enterococci have emerged as a cause of endocarditis and nosocomial infections despite being normal commensals of the gastrointestinal and female genital tracts. We examined the role of two-component signal transduction systems in biofilm formation by the Enterococcus faecalis V583 clinical isolate and identified the fsr regulatory locus as the sole two-component system affecting this unique mode of bacterial growth. Insertion mutations in the fsr operon affected biofilm formation on two distinct abiotic surfaces. Inactivation of the fsr-controlled gene gelE encoding the zinc-metalloprotease gelatinase was found to prevent biofilm formation, suggesting that this enzyme may present a unique target for therapeutic intervention in enterococcal endocarditis.  相似文献   

15.
Enterococcus faecalis is a ubiquitous bacterium of the gut that is observed in persistent periradicular infections. Its pathogenicity is associated with biofilm formation and the ability to survive under nutrient-poor (starvation) conditions. However, characteristics of chemical composition of biofilm cells developed by starved E. faecalis cells remain poorly understood. In this study, E. faecalis cells in exponential, stationary, and starvation phases were prepared and separately cultured to form biofilms. Confocal laser scanning microscopy was performed to verify biofilm formation. Raman microscopy was used to investigate the chemical composition of cells within the biofilms. Compared to cells in exponential or stationary phase, starved cells developed biofilms with fewer culturable cells (P?E. faecalis.  相似文献   

16.
Selenium has been shown to be present as a labile cofactor in a small class of molybdenum hydroxylase enzymes in several species of clostridia that specialize in the fermentation of purines and pyrimidines. This labile cofactor is poorly understood, yet recent bioinformatic studies have suggested that Enterococcus faecalis could serve as a model system to better understand the way in which this enzyme cofactor is built and the role of these metalloenzymes in the physiology of the organism. An mRNA that encodes a predicted selenium-dependent molybdenum hydroxylase (SDMH) has also been shown to be specifically increased during the transition from planktonic growth to biofilm growth. Based on these studies, we examined whether this organism produces an SDMH and probed whether selenoproteins may play a role in biofilm physiology. We observed a substantial increase in biofilm density upon the addition of uric acid to cells grown in a defined culture medium, but only when molybdate (Mo) and selenite (Se) were also added. We also observed a significant increase in biofilm density in cells cultured in tryptic soy broth with 1% glucose (TSBG) when selenite was added. In-frame deletion of selD, which encodes selenophosphate synthetase, also blocked biofilm formation that occurred upon addition of selenium. Moreover, mutation in the gene encoding the molybdoenzyme (xdh) prevented the induction of biofilm proliferation upon supplementation with selenium. Tungstate or auranofin addition also blocked this enhanced biofilm density, likely through inhibition of molybdenum or selenium cofactor synthesis. A large protein complex labeled with (75)Se is present in higher concentrations in biofilms than in planktonic cells, and the same complex is formed in TSBG. Xanthine dehydrogenase activity correlates with the presence of this labile selenoprotein complex and is absent in a selD or an xdh mutant. Enhanced biofilm density correlates strongly with higher levels of extracellular peroxide, which is produced upon the addition of selenite to TSBG. Peroxide levels are not increased in either the selD or the xdh mutant upon addition of selenite. Extracellular superoxide production, a phenomenon well established to be linked to clinical isolates, is abolished in both mutant strains. Taken together, these data provide evidence that an SDMH is involved in biofilm formation in Enterococcus faecalis, contributing to oxidant production either directly or alternatively through its involvement in redox-dependent processes linked to oxidant production.  相似文献   

17.
18.
Trials were conducted to determine the in vivo transferability of plasmid-mediated antibiotic resistance between two strains of enteric Gram-positive bacteria. Germ-free mice were associated with the donor Lactobacillus reuteri DSM 20016 strain, carrying the broad host range pAM beta 1 plasmid, and with the Enterococcus faecalis JH2SS recipient strain. Analysis of faecal content of associated mice demonstrated that the in vivo transfer of this plasmid did occur and that frequencies of conjugation were affected by the presence of subtherapeutic levels of antibiotic in the diet.  相似文献   

19.
Aggregation substance (AS), a plasmid-encoded surface protein of Enterococcus faecalis, plays important roles in virulence and antibiotic resistance transfer. Previous studies have suggested that AS-mediated aggregation of enterococcal cells could involve the binding of this protein to cell wall lipoteichoic acid (LTA). Here, a method to purify an undegraded form of Asc10, the AS of the plasmid pCF10, is described. Using this purified protein, direct binding of Asc10 to purified E. faecalis LTA was demonstrated. Equivalent binding of Asc10 to LTA purified from INY3000, an E. faecalis strain that is incapable of aggregation, was also observed. Surprisingly, mutations in a previously identified aggregation domain from amino acids 473 to 683 that abolished aggregation had no effect on LTA binding. In frame deletion analysis of Asc10 was used to identify a second aggregation domain located in the N-terminus of the protein from amino acids 156 to 358. A purified Asc10 mutant protein lacking this domain showed reduced LTA binding, while a purified N-terminal fragment from amino acids 44-331 had high LTA binding. Like the previously described aggregation domain, the newly identified Asc10((156-358)) aggregation domain was also required for efficient internalization of E. faecalis into HT-29 enterocytes. Thus, Asc10 possess two distinct domains required for aggregation and eukaryotic cell internalization: an N-terminal domain that promotes binding to LTA and a second domain located near the middle of the protein.  相似文献   

20.
Abstract Five high molecular weight glycolipids capable of stimulating human peripheral whole-blood cell cultures to cause interleukin 6 (IL-6) and tumor necrosis factor (TNF)-α induction were isolated from one of the lipoteichoic acid fractions (LTA-2) extracted from Enterococcus hirae ATCC 9790 (Tsutsui et al., (1991) FEMS Microbiol. Immunol. 76, 211–218) by a combination of hydrophobic interaction and anion-exchange chromatographies. This purification procedure resulted in a remarkable increase in the cytokine-inducing activities on the weight basis of isolated glycolipids (a maximum of 36- and 17-fold increases of IL-6 and TNF-α induction, respectively). The total yield of these bioactive glycolipids amounted to 6 wt% of the parent LTA-2 fraction, while the recovery rate in terms of the cytokine-inducing activities was estimated to be sufficient. The chemical composition and the profile, using SDS-PAGE, revealed that all of the isolated bioactive components were high molecular weight glycolipids, which were distinct from each other and from the parent LTA-2 fraction. These findings suggest that the IL-6 and TNF-α-inducing activities previously noted in the parent LTA-2 fraction are not attributable to a chemical entity, the structure of which had been proposed elsewhere (Fischer, W. (1990) in Glycolipids, Phosphoglycolipids and Sulfoglycolipids (Kates, M. ed.) pp. 123–234, Plenum Press, New York), but to the other high molecular weight glycolipids described here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号